
LAMA: Link-Aware Hybrid Management for Memory Accesses
in Emerging CPU-FPGA Platforms

Liang Feng
1
, Jieru Zhao

1
, Tingyuan Liang

1
, Sharad Sinha

2
and Wei Zhang

1

1Hong Kong University of Science and Technology, Hong Kong, {lfengad, jzhaoao, tliang, wei.zhang}@ust.hk
2India Institute of Technology Goa, India, sinh0001@e.ntu.edu.sg

ABSTRACT
To satisfy increasing computing demands, heterogeneous comput-

ing platforms are gaining attention, especially CPU-FPGA plat-

forms. Recently, emerging tightly coupled CPU-FPGA platforms

with shared coherent caches (such as the Intel HARP and IBM

POWER with CAPI) have been proposed to facilitate data commu-

nication and simplify the programming model. In this work, we

propose LAMA, a static analysis and dynamic control combined

framework for memory access management in such platforms, to

further enhance the memory access efficiency and maintain the

data consistency. Based on implementation results on the real Intel

HARP2 platform, LAMA is shown to improve the performance by

34% on average with low overhead.

1 INTRODUCTION
The increasing demand for energy efficiency and performance in

today’s computing has stimulated the success of heterogeneous

computing platforms in a wide range of computing scenarios, such

as machine learning, cybersecurity, genomics, etc. Among them,

CPU-FPGA platforms are promising due to the reconfigurability

of the FPGA, which enables hardware customization to fit the spe-

cific computing requirements. In emerging CPU-FPGA platforms

such as the Intel HARP series [5] and IBM Power series with CAPI

[11], the tightly integrated CPU and FPGA coherently share the

same cache system, so that the data communication efficiency is en-

hanced and the programming model is evolved to where the FPGA

can act as a coherent peer to the CPU to access the same virtual

memory space. In the recently released Intel HARP2[5], there are

three links between the XEON processor and the Arria 10 FPGA

fabric, one QPI link and two PCIe links, which are all connected to

the last level cache (LLC) residing on the CPU side, with coherence

guaranteed. Moreover, a coherent FPGA cache is attached to the

QPI link for quick memory access and data reuse. HARP2-style

platforms are highly promising due to the architecture advance and

have shown large benefit in lots of computing scenarios [10][13].

The choice among the multiple links in HARP2-style emerging

CPU-FPGA platforms for each access can heavily influence the

memory access efficiency, thus affecting the whole performance.

All the links need to be fully utilized in balance at the same time to

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00

https://doi.org/10.1145/3316781.3317846

Figure 1: HARP2 Platform Architecture

boost the bandwidth. Moreover, the access of the data with high

reuse potential can benefit from the FPGA cache by choosing the

QPI link. In contrast, it is hard for the access of the data with low

reuse potential to benefit from the FPGA cache, but it can avoid

polluting the cache if using the PCIe link. A bad link choice may

cause link contention with unbalanced link utilization and increase

the FPGA cache misses by wasting the reuse benefit. On the other

hand, the data consistency among links can be violated when the

accesses to the same data block are issued to different links, which

can cause severe mistakes.

In this paper, we propose LAMA, a static (compile-time) and dy-

namic (run-time) collaborative memory access management frame-

work for emerging CPU-FPGA platforms, such as Intel HARP2,

to select the proper link for the memory accesses from the FPGA

to keep the balance among links and boost the FPGA cache reuse

benefit. As well, LAMA maintains the data consistency regarding

the consistency hazards. The static analysis in LAMA provides

accurate directions to the dynamic control. The dynamic control

makes the link selection decision not only with high quality, due to

the accurate directions, but also adaptively to the real-time status,

including the utilization of links and the content in the FPGA cache.

We implement diverse applications on the real HARP2 platform for

evaluation. To the best of our knowledge, this is the first work on

memory access management targeting the HARP2-style CPU-FPGA

platforms, which have multiple communication links to connect

the FPGA to the shared memory system. This paper makes the

following contributions:

• Ahybridmemory accessmanagement framework forHARP2-

style CPU-FPGA platforms.

• A reuse distance-based and data consistency-aware analysis

to classify the accessed data blocks into six types.

• A balance-aware adaptive control based on the classification

to select link for the accesses to better utilize all links and

the FPGA cache.

• Apair list data structure-based algorithm and a post-processing

to decide an optimal data consistency maintenance scheme.

• A complete set of software services and high-performance

hardware IPs to ease the use of LAMA.

2 HARP2-STYLE CPU-FPGA PLATFORM
Emerging CPU-FPGA platforms such as Intel HARP2 tightly inte-

grate the multi-core CPU and the FPGA via bus as in Fig. 1. The

https://doi.org/10.1145/3316781.3317846

unit to execute the accelerated task on the FPGA is called the Ac-

celerated Function Unit (AFU). In HARP2, the CPU and the FPGA

coherently share one LLC and the DRAM, which both reside on the

CPU side. There are three links between the FPGA and the LLC,

one QPI link and two PCIe links, one of which can be chosen for

each memory access from the FPGA. A cache is implemented on

the FPGA at the QPI side for quick and flexible memory access. The

CPU local caches, FPGA cache, LLC and DRAM form the shared

memory system within the same coherence domain with the sup-

port of coherence protocol. The explicit software control for data

movement and coherence maintenance are eliminated due to the

coherent caches. The AFU will be assigned a continuous memory

region from the virtual memory space of the CPU thread, called the

workspace, for allocating its related data. The AFU initiates accesses

using virtual addresses at cacheline granularity. The virtual address

will be translated into the physical one by the Memory Properties

Factory (MPF), and then go to one of the three links through the

FPGA Interface Unit (FIU). When using the QPI, the FPGA cache

will be accessed, where the access will be satisfied rapidly if hit

or the missing cacheline will be requested from the LLC to the

FPGA cache through the QPI if miss. When using a PCIe, the LLC

will be accessed through the PCIe. Requested data locating in the

FPGA cache may transfer from the FPGA to the LLC and back to

the FPGA through the coherence mechanism with extremely large

overhead if using a PCIe. Hence the FPGA cache must be considered

for link selection. We denote the QPI as cached link and the PCIes

as uncached links.

In HARP2, even though the MPF can maintain the ordering

among all the accesses, the data consistency can still be violated

due to two kinds of hazards when an access is issued to a differ-

ent link after a preceding Write for the same data block. If the

later-issued access is Read, the preceding Write may have not been

updated from the perspective of the link for the Read, which is a

Read-After-Write (RAW) hazard. If the later-issued access is Write,

which Writes will be finally recorded can not be guaranteed, which

is aWrite-After-Write (WAW) hazard. Such RAW/WAWhazards can

cause execution mistakes. Hence, the WrFence access is provided

in HARP2. By issuing a WrFence to the memory system, the update

from all the previous Writes can be globally observable by all the

links, and thus all the links come to a synchronized data-consistent

point. Therefore, inserting a WrFence between a Write and a later

access eliminates the data inconsistency. However, WrFence has a

large overhead of hundreds of clock cycles. Hence, a sophisticated

scheme is needed to reduce the number of required WrFences.

3 RELATEDWORK
One of the effects of the scheme we propose is boosting the FPGA

cache benefit. In the CPU and GPU domains, to boost the cache

reuse benefit, cache bypassing, where the memory requests to se-

lectively bypass the cache to mitigate the cache contention, is used

[12][6][7][2]. These methods usually predict the reuse potential by

run-time monitoring, which results in large overhead and low ac-

curacy due to the limited predicting view. In emerging CPU-FPGA

platforms, the memory access pattern from the AFU is usually

determinate, which makes the static pre-analysis feasible for an

accurate reuse benefit estimation to enable a better solution quality

Figure 2: Static Analysis Flow

and eliminate the run-time prediction overhead.

For CPU-FPGA platforms, [3] alleviates the contention among

AFUs on the FPGA cache by combining cache bypassing and par-

titioning, while [4] adopts cache bypassing to increase the FPGA

cache hit rate. However, the platforms targeted by these works

have only one bus link between the CPU and FPGA. The three

parallel bus links between the CPU and FPGA in HARP2-style CPU-

FPGA platforms that we target make the problem different from

two aspects. First, the balance among the links will influence the

link utilization and effective bandwidth, and thus the performance.

Second, the race among the links may cause data inconsistency.

Moreover, these works require modification to the cache structure,

while our scheme is implemented on the real HARP2 platform with-

out the cache structure modification allowance. For HARP2-style

platforms, the combination of link balance, data consistency and

cache benefit makes the problem more challenging.

4 OVERVIEW OF LAMA FRAMEWORK
LAMA consists of a static analysis and a run-time control. FPGA

tasks often hold determinate access pattern regardless of the input

data, such as DNN, signal processing, etc., hence the memory access

pattern can be analyzed using only a sample memory access trace.

In the static step, the memory access trace of the AFU is profiled

and analyzed. The data blocks are classified into six types reflect-

ing different link preferences and data consistency maintenance

demands. Data block is defined to index the AFU workspace based

on the cacheline size, where each data block corresponds to the

data in one cacheline. Meanwhile, the data consistency analysis

optimally decides a data consistency maintenance scheme. Then,

the post-processing simplifies the data consistency maintenance

scheme and accordingly polishes the classification result. The static

analysis flow is shown in Fig. 2. At run-time, according to the clas-

sified type and the real-time status of the links and the cache, an

adaptive control selects the link for each access. Meanwhile, the

WrFences are automatically inserted based on the pre-decided data

consistency maintenance scheme, where the link selection and the

WrFence insertion are both responsible for the data consistency

maintenance. The classified type, which is aware of the cache reuse

potential, guides the link selection so that the FPGA cache benefit

is enhanced. The adaptability of the run-time control to real-time

status helps to achieve balance among links, and thus guarantees a

better utilization of all links.

5 STATIC ANALYSIS
5.1 Data Block Classification
In the static step, reuse distance analysis [1] is applied to the mem-

ory access trace of the AFU to derive the reuse distance of each

access regarding different cache sets. The accesses with a reuse

2

distance smaller than the cache associativity will hit in the cache,

and otherwise will miss. When some of the preceding accesses

use uncached links, an access may still hit even though its reuse

distance is not smaller than the cache associativity. The larger the

reuse distance is, the harder it is for an access to hit. Larger distance

means lower locality. From this observation, a locality classification

is performed. First, the average reuse distance of all the accesses to

each data block is calculated asMeandis as equation (1), whereAcc
represents an access to the data block B and Acc .Dis represents its
reuse distance. The thresholdDM alleviates the impact of extremely

large distances toMeandis . Then, lines 2∼9 in Algorithm 1 classify

each data block into three types. H-type indicates a high locality

and a high demand for choosing the cached link to benefit from the

cache hit. L-type indicates a low locality, where the accesses are

hard to hit and thus prefer uncached links to avoid polluting the

cache to make space for other accesses which may benefit from the

cache. M-type indicates a medium locality and the accesses hold

a medium reuse potential with no special link preference. H-type,

M-type and L-type are the locality type for a data block.

Meandis =

∑
all Acc to B

min(Acc .Dis , DM)∑
all Acc to B

1

(1)

Consistency classification is performed at the same time. From

the memory access trace, the WAW and RAW hazards are detected.

If there is WAW or RAW hazard among the accesses to a data block,

the block is classified as D-type. Otherwise, it is classified as N-type.

D-type and N-type are the consistency type for a data block. Only

a D-type data block has the data consistency maintenance demand.

In Algorithm 1, totally six types, reflecting the different locality

levels and data consistency maintenance demands, are classified.

These are H-D-type, H-N-type, M-D-type, M-N-type, L-D-type and

L-N-type. A block-type mapping, which maps each data block ID to

one of the six types, is generated. The mapping will be compressed

by grouping, where continuous data blocks of the same type will

be grouped together.

Algorithm 1 Data Block Classification Algorithm

1: for each data block B in workspace do
2: calculateMeandis for B
3: if Meandis < threshold TS then
4: data block B is H − type
5: else if Meandis > threshold TL then
6: data block B is L − type
7: else
8: data block B isM − type
9: end if (locality classification)
10: if RAW or WAW exitsts for B then
11: data block B is D − type
12: else
13: data block B is N − type
14: end if (consistency classification)
15: combine locality type and consistency type for B
16: end for

5.2 Data Consistency Analysis
The data consistency analysis generates a WrFence table, which

reflects how to insert the WrFences to guarantee that a WrFence is

inserted between every pair of accesses with RAW/WAW hazard.

From the memory access trace, each WriteW , and the first access

to the same data block after this Write S are extracted to form a pair.

All the extracted pairs form a pair list data structure. The access ID

Algorithm 2 WrFence Insertion Decision Algorithm

1: WrFence_Table = ∅

2: while (!Pair _List .empty()) do
3: Pmax = the pair with the largestW .ID in Pair _List
4: W IDmax =W .ID of Pmax
5: IDWrmax = IDWr of Pmax
6: WrFence_Table =WrFence_Table ∪ {IDWrmax }

7: Remove the pairs whose S .ID >W IDmax from Pair _List
8: end while
9: return WrFence_Table

ofW and S are annotated asW .ID and S .ID. The ID of an access is

the number of accesses before it and reflects the sequential order of

the accesses. To guarantee whole data consistency, WrFence should

exist between each pair. The Write ID is also annotated for eachW
as IDWr , where a Write with Write ID n identifies the nth Write

from the start of execution.

With the pair list data structure, Algorithm 2 tries to locate each

WrFence between as many pairs as possible to minimize the number

of required WrFences. In each iteration, the IDWr of the pair with

the largestW .ID is recorded in the WrFence table, which means

a WrFence is required immediately after theW of this pair. For

each removed pair in one iteration, itsW is before the recorded

WrFence and its S is later than the recorded WrFence according

to the sequential order reflected by the access ID, so the recorded

WrFence exists between all the removed pairs. Finally, all the pairs

are removed, and thus a WrFence is guaranteed between each

pair. The pair list is implemented using a red-black tree [8] based

structure and the whole time complexity of the WrFence insertion

decision algorithm is O(nlogn).
The number of WrFences should be as small as possible to reduce

the WrFence overhead. Algorithm 2 can give the optimal solution,

where the number of recorded WrFences is exactly the minimal

required number of WrFences for guaranteeing a WrFence between

each pair. The proof of the optimality is as follows.

Lemma 5.1. Given that the number of WrFences recorded by Al-
gorithm 2 is n, then at least n Wrfences are needed to guarantee a
WrFence between each pair ofW and S in the pair list.

Proof. In Algorithm 2, the number of recorded WrFences n is

the number of iterations. Pmax in iteration i is Pi . The S .ID of

Pi must be smaller than the W .ID of Pi−1; otherwise Pi would
have already been removed in iteration i − 1. Also for each pair,

W .ID < S .ID. Hence, no intersection exits between Pi and Pi−1.
So, Pmax from all n iterations are without intersection. A WrFence

is needed between each pair, and the pairs without intersection

cannot share the WrFence. So one unique WrFence is needed for

Pmax from one iteration. Therefore at least n WrFences are needed,

where each WrFence corresponds to Pmax from each iteration. �

5.3 Post-Processing
Algorithm 3 Post-Processing Algorithm

1: Group_Pool = ∅

2: while (WrFence_Table.size() > Tmax) do
3: Gmax = the group with most un-removed effective WrFences

4: Group_Pool =Group_Pool ∪ Gmax
5: Remove WrFences from WrFence_Table whose effective groups are all inGroup_Pool
6: end while
7: for each groupG not inGroup_Pool do
8: if G .consistency_type == D − type then
9: G .consistency_type→ N − type
10: end if
11: end for

3

Figure 3: Run-time Control Logic on FPGA

The WrFence table will be implemented on the FPGA for the

run-time control; thus its size cannot be too large. Post-processing

removes some WrFences to reduce the WrFence table size with

the help of D-type accesses if the size is larger than a threshold

Tmax . The run-time control will guarantee the D-type accesses to

the same data block always use the same link, so data inconsistency

is not possible and no WrFence is needed for D-type accesses. The

data consistency originally maintained by the removed WrFences

will be guaranteed by the fixed link usage of D-type accesses. The

WrFences and D-type accesses will collaborate to maintain the

data consistency at run-time. However, fixing the link usage will

harm the adaptability of link selection and exacerbate the unbal-

ance among links. Hence, D-type appears in the final block-type

mapping only when the number of WrFences is too large. The post-

processing algorithm is shown in Algorithm 3. Tmax is set to 256

in the experiments and adjustable. The effective WrFence of a pair

from the pair list is defined as the first recorded WrFence after the

W of this pair. This WrFence is also the effective WrFence of the

group in the block-type mapping which contains the accessed data

block of this pair. This group is also called the effective group of

its effective WrFence. In Algorithm 3, the data consistency of the

groups inGroup_Pool will be guaranteed by the fixed link usage of

D-type accesses with no need of WrFence, so the WrFences only

effective for these groups are removed and their consistency type

remains D-type. The consistency type of the other groups will be

re-classified to N-type, since their data consistency will be handled

by WrFences with no need of D-type for the fixed link usage. The

adjacent groups of the same type after the re-classification will

be re-grouped. The post-processing always guarantees a limited

WrFence table size with the help of D-type and thus makes LAMA

work well for larger scale tasks no matter how many WrFences

originally required. Through the post-processing, the shrunken Wr-

Fence table and re-grouped block-type mapping are finally output

from the static analysis.

6 RUN-TIME CONTROL
The run-time control is shown in Fig. 3. The block-type mapping is

checked for each data request from the AFU. The checked type is

used by a link selector to adaptively select the link for the access

based on the real-time status. The request is then sent to the chosen

link passing the MPF, which handles the address translation and

the ordering among all the accesses. A WrFence insertion block

issues required WrFences following the WrFence table.

6.1 Data Pre-loading and WrFence Insertion
In the block-typemapping, several boundaries separate theworkspace

into groups. The structure to represent a mapping consists of the

ID of the data blocks at the boundaries and the type of each group.

At run-time, by comparing the requested data block ID with the

Table 1: Eight Conditions for Link Selection
Tag Array Typenew Typeold Selected Link Tag Array Typenew Typeold Selected Link

A Hit Any Any cached link E Miss L-N-type H/M-type Npd -decided

B Miss H-type Any cached link F Miss M-N-type L-type Npd -decided

C Miss L-D-type Any LSB-decided G Miss M-N-type H/M-type Npd -decided

D Miss M-D-type Any LSBs-decided H Miss L-N-type L-type Npd -decided

boundary IDs, the type of its belonging group can be found. Usu-

ally in a task, continuous data is highly groupable with the same

access pattern and the total number of data groups is not large

due to the limited number of data categories in most tasks, so that

the block-type mapping size is not large, which can be efficiently

implemented on the FPGA. The structure of the WrFence table

consists of a series of IDWr s in ascending order. The block-type

mapping and the WrFence table are prepared as a chunk of data by

the CPU software and loaded onto the registers and BRAMs on the

FPGA through the shared memory system. Such data pre-loading is

performed ahead of the execution and thus will not incur overhead.

At run-time, the WrFence insertion block initiates WrFence re-

quests according to the WrFence table. The WrFence table records

the IDWr where the WrFences should be inserted. As soon as the

counter for completed Writes reaches the IDWr for the next Wr-

Fence to be initiated, aWrFence will be issued using a state machine

design, where all the unsettled requests from the AFUwill be stalled

until the response of the WrFence returns.

6.2 Link Selection
The link selector consists of a tag array, a pre-selection block and

an arbiter. The tag array records the tag and type for the data

blocks in the FPGA cache and is handled with virtual address. It

keeps consistent with the FPGA cache. Once a request comes from

the AFU, the tag array is checked to see whether the requested

data block Blkr eq currently resides in the FPGA cache. If there

is a tag array miss, the type of the conflicting data block Blkcof
for this miss will be output, denoted as Typeold . In parallel, the

type of Blkr eq will be checked from the block-type mapping and is

denoted as Typenew . Blkcof will be replaced by Blkr eq only if the

request chooses the cached link. The tag array not only enables pre-

knowledge of hit or miss since the FPGA cache cannot be checked

before choosing the cached link, but also provides the Typeold
information, both of which help in making a better link selection.

There are eight conditions according to the tag array hit or miss

and the checked types, as in Table 1. For condition A, the cached

link will be selected for a rapid access since Blkr eq resides in the

cache. For condition B, Typenew as H-type indicates a high cache

reuse benefit of Blkr eq , so the cached link will be selected to explore
more cache hits.

6.2.1 LSB-Based Selection for D-type. The selected link is decided

according to the LSBs (least significant bits) of the requested data

block ID for condition C and D. In condition C, two uncached links

will be selected respectively when the LSB is 0 or 1. In condition

D, if the least significant two bits are 00 or 01, the cached link will

be selected. And if they are 10 or 11, two uncached links will be

selected respectively. In this way, the D-type accesses to the same

data block are fixed to the same link, which is critical tomaintain the

data consistency, as discussed in Sec. 5.3. Such a selection not only

simplifies the design, but also considers the cache reuse potential,

where the L-D-type accesses only choose uncached links so as to

not pollute the cache, while the M-D-type accesses with no special

4

Figure 4: Complete Framework Layers of LAMA

link preference can choose among all the links. The access data

block ID tends to hold uniformly distributed LSBs, so the D-type

accesses can be uniformly distributed to the preferred links and

balance the link usage to some extent.

6.2.2 Utilization-Adaptive Selection for N-type. For conditions E∼H,
the utilizations of the linksNpd are monitored.Npd counts the num-

ber of requested cachelines of the pending requests on each link. For

link balance, Npd of all the links would be better to be at the same

level. The selection rules for conditions E∼G are similar, and are

shown in equations 2∼4, respectively. The cached link is denoted

as LC and the one with the smaller Npd between two uncached

links is denoted as LUs . We first compare Npd of LC and LUs with

a threshold (SlkLM , SlkML or SlkMM , which can be set to 8 and

adjustable) to see whether the link is heavily unbalanced. If so, the

less utilized link is selected to enhance the link balance. Otherwise,

the access will select the link which potentially provides more cache

benefit according to the Typenew and Typeold in that condition.

For example, in condition E (equation 2), according toTypenew and

Typeold , the cache reuse potential of Blkcof is higher than Blkr eq ,
so normally uncached links are preferred to keep Blkcof in the

cache. The cached link (LC) is selected only when its utilization

(Npd) is much lower than the uncached links (LUs); otherwise un-

cached links are used, between which LUs is selected to further

enhance the balance. For condition H, Blkr eq and Blkcof both hold

little cache reuse potential and allocating either to the cache has

the same effect. So the link with the smallest Npd among all links

is selected to only consider the link balance. Based on the cache

benefit type of both the requested and conflicting data, the selec-

tion adapts to the real-time status of the link utilization and cache

content to balance the link utilization, enhance the cache benefit,

and achieve a comprehensive optimization for the memory access

efficiency.{
LC , i f LC .Npd + SlkLM < LUs .Npd (heavily unbalanced)

LUs , otherwise (to enhance cache benef it)
(2){

LUs , i f LUs .Npd + SlkML < LC .Npd (heavily unbalanced)

LC , otherwise (to enhance cache benef it)
(3){

LC , i f LC .Npd + SlkMM < LUs .Npd (heavily unbalanced)

LUs , otherwise (to enhance cache benef it)
(4)

Normally, the selection starts only after checking the tag array

and block-type mapping. To overlap the latency, we propose pre-

selection, where the selected link within each condition are decided

in parallel in the pre-selection block before the checking results are

known. The pre-selection is executed in parallel with the checking.

Then, the arbiter selects the final link among the pre-selected links

according to the checking results.

7 COMPLETE FRAMEWORK SUPPORT
The complete software and hardware support for LAMA is provided

on the real HARP2 platform, as in Fig. 4. The dynamic control is

Figure 5: Comparison to Advanced Methods

designed as a HARP2-compatible FPGA IP with high efficiency,

where the sizes of the block-type mapping and WrFence table are

parameterized. Based on the Intel Open Programmable Acceleration

Engine (OPAE) environment, a set of multi-layer software services

are designed to automatically manage the LAMA IP and handle

its discovery, MMIO mapping, initialization, setting and data pre-

loading by simple API calls. Such management can be performed

off-line and thus will not incur overhead. Such a software services

and hardware IP combined framework not only eliminates the

user workload to use LAMA, but also guarantees high efficiency,

extensibility and portability.

8 IMPLEMENTATION AND EVALUATION
We complete the implementation of nine applications on the real

HARP2 platform based on Polybench [9]. The AFUs are generated

using Intel HLS, where both codes and HLS settings are tuned

to be HARP2-compatible with good performance. We efficiently

integrate the HLS-generated interface with HARP2. The frequency

is set to 200 MHz as many HARP-based designs [10][13], which is

also the maximal frequency achieved by HLS for these applications

on HARP2.

8.1 Comparison to Advanced Methods
In HARP2, two advanced methods combining link selection opti-

mization and data consistency maintenance are provided, denoted

as HARPopt and HARPdyn . The total AFU execution time using

HARPopt , HARPdyn and LAMA, normalized to HARPopt , is shown

in Fig. 5. LAMA improves the performance in terms of execution

time by 34.6% and 33.9% on average compared with HARPopt and
HARPdyn , respectively. The large improvement comes from two

aspects by enhancing the memory access efficiency. First, HARPopt
fixes the link selection for the same data block and HARPdyn can

only change the link selection for the same data block periodically,

which suppress the link balance and waste the link utilization due

to the loss of adaptability. While in LAMA, the N-type link selec-

tion adapts to the real-time link utilization, so a more balanced

link utilization is achieved, which eliminates the contention on

one link and fully utilizes all the links, thus enhancing the effec-

tive bandwidth. Second, the cache reuse benefit can be boosted in

LAMA, while HARPopt and HARPdyn cannot take the cache reuse

benefit into consideration. The cache benefit is especially high for

HARP2-style platforms, where a non hit access needs to pass the

bus to the LLC residing on the CPU side.

8.2 Discussion on Data Consistency
TheWrFence table size (W-Num), the number of all groups (G-Num)

and D-type groups (D-Num) in the block-type mapping before and

after the post-processing are shown in Table 2. The number of

RAW/WAW hazards (H-Num) is also shown. Algorithm 2 finds the

minimal required WrFences by maximizing the WrFence sharing

5

Table 2: Post-Processing Results
2mm atax fdtd2d gemm correlation jacobi1d deriche gesummv seidel2d

H-Num 8128 49236 1261065 16777216 14669 248833 5120 3577 33521671

W-Numbef ore 1 96 888592 16384 6302 122 3 3577 33513484

W-Numaf ter 1 96 8 0 3 122 3 0 0

G-Numbef ore 3 4 66 3 3 2 4 3 4

G-Numaf ter 3 4 5 3 3 2 4 3 4

D-Numbef ore 1 2 33 1 3 2 3 1 1

D-Numaf ter 0 0 1 1 1 0 0 1 1

Figure 6: Comparison for Post-Processing Effect

among RAW/WAW hazards and thus reduces the WrFence table

size to W-Numbef ore compared with H-Num, especially in atax ,
etc. The post-processing further reduces the large WrFence table

size to make it sustainable on the FPGA, such as in f dtd2d , etc.
Some D-type groups are not needed since their data consistency

is maintained by WrFences, which results in a reduced number of

D-type groups after post-processing, such as in deriche , etc. If the
number of required WrFences before post-processing is small, the

data consistency will be maintained only by WrFences and D-type

will be avoided since it may harm the adaptability. However, when

the WrFence table before post-processing is too large, using D-type

enables Algorithm 3 to reduce the table size to be sustainable on

the FPGA while guaranteeing data consistency.

We compare the normalizedAFU execution time usingHARPdyn ,

LAMA and AllD in Fig. 6. In AllD , we keep the D-type before the

post-processing to maintain the data consistency with no WrFence.

Applications whose D-type unchanged through post-processing

are not considered, since AllD is the same as LAMA for them.

AllD improves the performance by 23% on average compared with

HARPdyn . In LAMA, the data without RAW/WAW hazard is distin-

guished as N-type and always holds adaptability when selecting the

link which results in better link balance and cache usage. Moreover,

the D-type selection in Sec 6.2.1 still considers the link balance to

some extent, and the locality classification still boosts the cache

reuse benefit. Hence, LAMA still shows the benefit, even though

fixed D-type selection is used for all the data with RAW/WAW

hazard as in AllD . LAMA improves the performance by 11.5% on

average compared withAllD and shows the further benefit of using

WrFences, which is because the reduction of D-type enabled by

WrFences ensures more adaptability due to less fixed link selection.

The number of inserted WrFences becomes small through the post-

processing; thus their expense will not have a large influence.

In total, the WrFences and the fixed link usage of D-type col-

laborate to maintain the data consistency. The experiments all run

successfully, which proves the data consistency maintenance ability

of LAMA. Note that the MPF handles the ordering among all the

accesses, which also contributes to the data consistency.

8.3 Effect of Classification
We modify LAMA as three methods, AllH , AllM and AllL , in which

the locality type of all data is treated as H-type, M-type and L-

type, respectively. D-type and N-type are still classified. The AFU

execution time with AllH , AllM , AllL and LAMA, normalized to

HARPdyn , is shown in Fig. 7. AllH , AllM and AllL worsen the

Figure 7: Comparison for Classification Effect

performance by 85%, 58% and 62%, respectively, compared to LAMA.

The classification brings the analyzed link preference into the link

selection, which makes the performance of LAMA better thanAllH ,

AllM and AllL .

8.4 Overhead Analysis
With the optimized design, the latency of the run-time control

is kept as one clock cycle and can be within two cycles even at

400MHz, the highest frequency in HARP2. While HARPopt and

HARPdyn also incur several clock cycles overhead. Such low over-

head can be compensated by the great benefit of LAMA. Moreover,

the bandwidth is not affected by the latency due to the highly

pipelined memory access path. The number of ALMs, registers and

block memory bits are only increased by 1.9%, 1.3% and 0.3% on

average for all the applications with LAMA compared to HARPopt ,

and the resource usages of HARPopt and HARPdyn are basically

the same. The LAMA run-time control occupies 3220 ALMs, 1932

registers and 13312 block memory bits, which are less than 1% of the

resources. LAMA has low overhead in both latency and resources.

9 CONCLUSION
In this work, we present LAMA, a hybrid memory access man-

agement framework that can boost the performance of emerging

HARP2-style CPU-FPGA platforms. It combines the link utilization

balance, cache benefit improvement and data consistency mainte-

nance together using a static and dynamic coordinated approach. A

complete framework with interactive multi-layer software services

and hardware IP is provided to support its use. Experiments on

the real HARP2 platform show the benefit of LAMA, with a large

performance improvement of 34% and low overhead.

REFERENCES
[1] Kristof Beyls and Erik D’Hollander. 2001. Reuse distance as a metric for cache behavior. In

Parallel and Distributed Computing and Systems, IASTED Conf. on.
[2] Xuhao Chen et al. 2014. Adaptive cache management for energy-efficient GPU computing. In

Microarchitecture (MICRO), Int’l Symp. on. IEEE.
[3] Liang Feng et al. 2017. A hybrid approach to cache management in heterogeneous CPU-FPGA

platforms. In Computer-Aided Design (ICCAD), Int’l Conf. on. IEEE.
[4] Liang Feng et al. 2018. CAMAS: Static and dynamic hybrid cache management for CPU-FPGA

platforms. In Field-Programmable Custom Computing Machines (FCCM), Int’l Symp. on. IEEE.
[5] PK Gupta. 2016. Accelerating datacenter workloads. In Field Programmable Logic and Appli-

cations (FPL), Int’l Conf. on.
[6] Mazen Kharbutli and Yan Solihin. 2008. Counter-based cache replacement and bypassing

algorithms. IEEE Trans. on Computers 57, 4 (2008), 433–447.
[7] Chao Li et al. 2015. Locality-driven dynamic GPU cache bypassing. In Supercomputing (SC),

Int’l Conf. on. ACM.

[8] Chris Okasaki. 1999. Red-black trees in a functional setting. J. of Functional Programming 9,

4 (1999), 471–477.

[9] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL: http://www. cs.
ucla. edu/pouchet/software/polybench (2012).

[10] Weikang Qiao et al. 2018. High-throughput lossless compression on tightly coupled CPU-

FPGA platforms. In Field-Programmable Custom Computing Machines (FCCM), Int’l Symp. on.
IEEE.

[11] Jeffrey Stuecheli et al. 2015. CAPI: A coherent accelerator processor interface. IBM J. of
Research and Development 59, 1 (2015), 7–1.

[12] Xiaolong Xie et al. 2015. Coordinated static and dynamic cache bypassing for GPUs. In High
Performance Computer Architecture (HPCA), Int’l Symp. on. IEEE.

[13] Hanqing Zeng et al. 2018. A framework for generating high throughput CNN implementa-

tions on FPGAs. In Field-Programmable Gate Arrays (FPGA), Int’l Symp. on. ACM, 117–126.

6

