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Abstract—High-level synthesis (HLS) of field programmable
gate array (FPGA)-based accelerators has been proposed in order
to simplify accelerator design process with respect to design time
and complexity. However, modern HLS tools do not consider
dynamic memory allocation constructs in high-level program-
ming languages like C and limit themselves to static memory
allocation. This paper proposes a dynamic memory allocation
and management scheme, called Hi-DMM, for inclusion in com-
mercial HLS design flows. Hi-DMM performs source-to-source
transformation of user C code with dynamic memory constructs
into C-source code with the dynamic memory allocator and
management scheme developed in this paper. The transformed
C-source code is amenable to synthesis by commercial tools like
Vivado HLS. Relying on buddy tree-based allocation schemes and
efficient hardware implementation of the allocators, Hi-DMM
achieves 4× speed-up in both fine-grained and coarse-grained
memory allocation compared to previous works. Experimental
results obtained by including Hi-DMM with Vivado-HLS show
that dynamic memory allocation of FPGA memory resources can
be achieved at a much lower latency with minimal resource over-
head, paving the way for synthesis of dynamic memory constructs
in commercial HLS flows.

Index Terms—Field programmable gate array (FPGA), high-
level synthesis (HLS), memory management.

I. INTRODUCTION

W ITH the increase in complexity of designs implemented
on devices like field programmable gate array (FPGA),

the level of design abstraction used for description has been
raised from register transfer level to high-level languages, in an
effort to reduce design cost and design time. High-level synthe-
sis (HLS) tools help designers to automatically transform the
behavioral description specified in high-level languages (e.g.,
C/C++) into RTL-level design [1]. However, current HLS
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tools are unable to have comprehensive support for dynamic
constructs [e.g., dynamic memory management (DMM)] in
these languages. This limitation forces designers to perform
code refactoring in case of legacy code and limit themselves
to static memory allocation.

FPGAs come with abundant on-chip memory resource these
days. However, the limited design expressibility because of
limitations in support for DMM, prohibits a designer from
creating designs that can maximize the utilization potential
of the on-chip memory resources during run time and thus
achieve higher performance. For solutions to DMM based on
operating system for CPUs, efficient algorithms have been
proposed by researchers, such as garbage collection [2] and
slab allocation [3]. Unfortunately, these CPU-based solutions
will lead to unnecessary resource overhead if transplanted on
FPGA directly. Existing solutions [4]–[8] to FPGA DMM
in previous works lead to high latency of memory alloca-
tion and significant area overheads. Thus, they significantly
undermine the overall performance of FPGA-based acceler-
ators. Additionally, the previous works have not sufficiently
addressed the issue of fine-grained DMM, e.g., allocation of a
dynamic tree node, and coarse-grained DMM, e.g., allocation
of an array, which again means very limited flexibility.

To address these issues comprehensively, we propose
an open-source tool, Hi-DMM, coupled with VivadoHLS,
an HLS platform developed by Xilinx. Hi-DMM can
automatically analyze the source code of HLS module and
transform it, equipping the HLS-generated accelerator with
high-performance DMM allocators, which are based on buddy
tree allocation scheme and its proposed variants. The high-
lights of Hi-DMM are as follows.

1) It is a part of HLS methodology. The DMM components,
including allocators and heap memories, are described
in C and are synthesizable with commercial HLS tools
like Vivado-HLS.

2) HLS accelerators can access Hi-DMM allocator via HLS
handshake protocol. Most of the proposed DMM com-
ponents are automatically configured for adaption to the
characteristics of source code, e.g., memory allocation
granularity and HLS directives.

3) It achieves high-performance memory allocation. The
buddy-tree allocators search the allocable addresses by
using bit-vector (BV) computation and maintain the
information in parallel. Preallocation scheme, look-up
table, and mini-heap are involved to minimize memory
allocation latency.
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TABLE I
COMPARISON BETWEEN HI-DMM AND PREVIOUS DMM ALLOCATORS

This paper is organized as follows. Section II discusses the
related works. Section III presents motivation and overview
of Hi-DMM. Section IV illustrates the compilation flow of
Hi-DMM. Section V explains the mechanisms of Hi-DMM
allocators. Section VI provides the evaluation results of
Hi-DMM. Section VII concludes this paper.

II. RELATED WORK

Table I presents the comparison between the solution of
Hi-DMM and related works. All the presented DMM allo-
cators can perform memory reuse by de-allocating memory
blocks for later allocation. Higher memory utilization indicates
less inter- and intra-fragment. High-performance allocators
have low latency of allocation.

By allocating fixed-size blocks, Dessouky et al. [5] proposed
a hardware dynamic on-chip memory management unit
(DOMMU) to manage distributed shared on-chip memory
among several processing elements. The scalability of their
work is limited by the resource utilization of crossbar-
based interconnection and latency overhead due to arbitration.
Additionally, the fixed-size allocation may result in serious
memory fragmentation, memory resource waste, and difficulty
for variable size of allocation.

For the purpose of higher utilization of memory resource,
DMM based on free-list and first-fit algorithm has been studied
by Diamantopoulos et al. [6]. They introduced the DMM-
HLS framework that extends HLS with DMM for multiple
accelerators case, maximizing the number of the accelerators
through effectively sharing memory resources. However, since
the first-fit algorithm has time complexity of O(n), the latency
of allocation increases if the granularity of allocation increases.
Even for coarse-grained DMM, the latency of DMM takes up
20% of overall execution time on average.

To improve the performance of DMM, the implementa-
tion of buddy allocation algorithm on hardware has been
proposed by Chang and Gehringer [4]. Based on this paper,
Agun and Chang [9] presented a hardware active memory
manager unit for software applications. The hardware allo-
cator achieves an allocation latency of 1 clock cycle but
increases the critical path dramatically, resulting in low clock
rate. Moreover, the total overhead of latency and area of their
design will increase exponentially when the depth of heap
increases. Özer [7] proposed a DMM allocator, free-list man-
ager (FLM), combining buddy tree and free-list to improve
memory utilization. However, for a request of allocation, FLM
will return a link list of noncontiguous memory blocks, making

the allocated memory hard to be processed in parallel. Besides,
an address translator for FLM costs the accelerator extra cycles
to access BRAM, which originally can be accessed in one
cycle. High access latency of BRAM significantly undermines
the performance of accelerator. Xue and Thomas [8] proposed
a framework called SysAlloc, which overcame the long criti-
cal path in [4] and achieved higher operating frequencies, by
inserting registers between stages. SysAlloc can manage DDR-
scale memories and enable clients to read and write memory
over a shared AXI bus. However, the latency of memory allo-
cation by SysAlloc reaches hundreds of cycles. Moreover, the
shared AXI bus traffic overhead limits the scalability of the
performance of SysAlloc and results in extra interconnection
area.

Moreover, all these prior approaches leave the configuration
of DMM components to designer and negate the effect of HLS
directives that could be present in the design’s description and
have significant impact. In this paper, we will propose a high-
performance low-overhead DMM scheme with the support of
HLS directives.

Note that Hi-DMM can be operated at up to 220 MHz, at
the cost of more cycles to handle requests. Through frequency
optimization, we operate Hi-DMM at 100 MHz to perform
lower total overhead, which is frequency times the number of
latency cycles. Considering allocation latency, memory utiliza-
tion, portability to HLS applications and single-cycle access
of BRAM for accelerator, we choose SysAlloc as the baseline
of Hi-DMM for later comparisons.

III. FRAMEWORK OVERVIEW

For DMM schemes, the implementation of the allocators
themselves can benefit from HLS methodology. The flow of
allocation mainly consists of two steps: 1) searching available
memory to satisfy the allocation request and 2) maintaining
the allocation information. Both steps can be accelerated with
the support of directives in HLS, e.g., loop pipeline and array
partitioning.

Hi-DMM is designed to be high-efficient DMM framework
based on HLS and for HLS. The overall framework of Hi-
DMM consists of the compilation of a design with DMM and
runtime mechanism of DMM. The compilation flow, shown in
Fig. 1, which analyzes the characteristics of the source code of
an accelerator, determines the configuration of DMM runtime
mechanism, shown in Fig. 2.

The input of compilation flow is a C/C++ application with
DMM APIs, as an example shown in Code 1. The output of the
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Fig. 1. Compilation flow of Hi-DMM.

Fig. 2. Runtime DMM mechanism of Hi-DMM.

Code 1. Example of HLS source code for DMM.

flow is a generated project where accelerator and DMM allo-
cators, both based on HLS, interconnect and interact with each
other. The compiler first checks DMM syntax, analyzes char-
acteristics of DMM behavior involved and evaluates available
FPGA resource. Next, according to the result of analysis, the
compiler configures DMM components, generates related HLS
modules and transforms DMM-related part in source code, as
an example of transformed code shown in Code 2. At the end
of DMM system generation, a Tcl script is used to connect
HLS generated modules into a Vivado block diagram. The
details of compiler are discussed in Section IV.

The foundation of Hi-DMM is based on optimized buddy
tree-based allocators. The runtime mechanism of these alloca-
tors is also described in C, with parameters and operations
tuned for high performance. To meet various requirements

Code 2. Example of output code of Hi-DMM.

of DMM, multiple allocators, with different parameters and
variations in allocation algorithms, could be integrated into
the generated project. An accelerator is connected directly to
allocators using HLS handshake protocol so that the former
can access the latter with lower latency and at a less cost
of area than the AXI4 protocol. Note that each allocator can
handle request sent from an accelerator independently, to sup-
port concurrent memory allocation. If multiple accelerators can
be grouped into a top module, they can share an allocator.
Detailed mechanisms are discussed in Section V.

IV. HI-DMM COMPILATION FLOW

The Hi-DMM compiler is composed of an analyzer of
source code, and a generator for FPGA projects with DMM.
The analyzer checks the DMM behaviors and computes the
statistics, required by the project generator to transform the
source code and configure DMM components.
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A. DMM Analyzer

In the view of source code, granularity of memory alloca-
tion and co-operations among dynamically allocated pointers
are more critical to the performance of DMM. As for HLS
on FPGA, compatibility with directives in HLS and available
resource on the target FPGA need to be evaluated to ensure
the DMM solution suitable for the specified hardware.

1) Granularity of Memory Allocation: According to the
size of memory requested, each function call of DMM will
be classified into three different types, constant-coarse-grained
allocation (CCGA), constant-fine-grained allocation (CFGA),
and variable-grained allocation (VGA). The parameters of
CCGA are known during compilation and the size of requested
memory is large, compared to CFGA. CFGA is similar to
CCGA but the size of CFGA is relatively small, e.g., an ele-
ment in a list. As for VGA, the parameters of allocation are
unknown during compilation. As shown in Code 1, allocated
array pointers a[] and b[] are based on VGA while c[] is a
CCGA-based pointer. Many data structures, e.g., tree and list,
involve frequent CFGA. As an example, root_node in Code 1
is allocated via CFGA.

2) Co-Operations Among Dynamically Allocated Pointers:
The co-operation between a pair of dynamically allocated
pointers refers to the operations involving both of them. These
co-operations can be detected via Clang, which is the frond-
end of LLVM [10]. The extent of co-operation between two
pointers is evaluated by the number of direct co-operations
involving both of them, in the source code. The output of
such procedure is a fully connected graph of pointer vari-
ables, where the weight of an edge represents the extent of
dependency between the two vertices (pointers) joined by that
edge. As shown in Code 1, the allocated array pointer a[] co-
operates with b[] frequently while the allocated array pointer
c[] is not involved in the direct calculation with other pointers.

3) Compatibility With Directives in HLS: HLS directives
are crucial for HLS designs since they guide the tool in syn-
thesizing the source code into FPGA-friendly RTL design with
higher performance (higher parallelism and lower area utiliza-
tion). Since the dynamically allocated memory (DAM) could
be involved in the code sections that have directives, the ana-
lyzer will check whether the DAM can be compatible with the
directives, thus ensuring successful synthesis. Additionally, the
check on directives also guides the DMM project generator to
configure the parameters of heaps and allocators. As shown in
Code 1, if the heap where c[] is allocated is not partitioned or
there is no transformation of loop structure, the loop unrolling
will not result in high parallelism in computation as expected.

4) Available Resource on Target FPGA: The available
resource on target FPGA constrains the implementation of
DMM. The analyzer will estimate how much resource, espe-
cially BRAMs, will be involved in the implementation of
accelerators excluding the DMM. A report is generated to
the generator indicating how much resource could be left for
DMM, including heaps and allocators.

B. DMM Project Generator

The automatic generator is based on libraries and tem-
plates. According to the statistics collected by the analyzer, the

Fig. 3. Example: configuration of heaps with Hi-DMM.

generator maps the DMM calls in the source code to heaps,
configures the parameters of heaps, selects proper DMM algo-
rithms for each allocator and finally generates the project
integrated with DMM.

1) Generation of DMM Components: Heaps will be instan-
tiated as arrays in HLS source code and accelerator requests
memory allocation in the heaps from allocator via DMM
interface. The heaps are generated with the following param-
eters: 1) the heap depth [the number of minimum allocable
units (MAUs) in the heap]; 2) the size of a single MAU;
3) the heap word width (the number of bits of every single
word of heap); 4) the number of partitions of heap; and 5) the
data type of elements, e.g., float. An example is shown in
Fig. 3.

The generator needs designers to set some flexible and criti-
cal parameters. There can be multiple heaps for the application
with different heap word width. More heaps will enable more
parallel accesses but require more resources. Hence, given a
range of possible heap numbers, the designer can set the heap
number according to the desired performance-area tradeoff.
The designer can also set the size of MAU in a heap which
is the most basic block for allocation. Note that larger MAUs
can shrink the depth of heap and improve the performance
of allocation but undermine the utilization of memory due
to fragmentation. The designer can also provide a priority
table which indicates which call of allocation in source code
could be more intensive than others, according to prior expe-
rience. This table can be used to determine the corresponding
heap depth. Otherwise, the generator will set the same depth
for all the heaps, which might lead to resource contention
for hot-spot allocations. Moreover, heaps can be partitioned
according to the designer-configured directives in the source
code. An example is illustrated in Section IV-B2 for detailed
heap partition.

The other parameters of heaps will be handled by the gen-
erator automatically as described next. First, the heap word
width and the type of elements are determined by the alloca-
tion function calls in HLS source code. Then, before evaluating
the proper depth for each heap, the assignment of allocation
request to heaps should be determined. An example of such a
procedure is shown in Fig. 3. Allocation requests with differ-
ent word widths and data types will be assigned to separate
heaps while the requests, whose two characteristics are the
same, may share a heap. However, to allocate pointers in the
same heap implies VivadoHLS that there could be unknown
data dependencies, resulting in conservative schedule during
synthesis [11]. Moreover, the concurrent accesses to a heap
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TABLE II
COMPARISON OF HI-DMM ALLOCATORS

are limited by the number of heap ports. Therefore, in order
to increase parallelism, the generator will do its best to assign
the pointers to different heaps. Those pointers involved in co-
operations frequently have higher priority to be assigned to
different heaps, while the pointers less related to each other,
will be assigned to a shared heap. The assignment of pointers
to heaps is done via a greedy algorithm based on the graph
provided by the analyzer.

Karger’s algorithm [12] is applied on this graph to find the
weighted max-cut and separates the graph into two subgraphs
by the max-cut. For the subsequent iterations, Karger’s algo-
rithm finds the max-cuts in the subgraphs and removes the
maximum one from the corresponding subgraph, thus increas-
ing the number of subgraphs. The greedy procedure will cease
when the number of subgraphs is equal to the specified number
of heaps. The pointers in a subgraph will be assigned into the
same heap. As the example shown in Fig. 3, the generator allo-
cates the array pointers a[] and b[] in different heaps when the
number of heaps is enough, because a[] and b[] have stronger
relation. Moreover, for most applications, CFGA requests usu-
ally occur more frequently than the allocation requests with
other granularities. In order to improve the performance of the
CFGA management, the requests of CFGA will be assigned to
the special heaps which are distinct from those for the alloca-
tion requests of other granularities. After assignment, based on
the priority table, the priority of allocation call will be accu-
mulated to the heaps and those heaps with higher priority can
be distributed with more BRAM resource.

Finally, according to the assignment of allocations, the
selected allocator as described in the next paragraph, param-
eters set by designer, and total available resources, the
maximum allowed depth for each heap can be calculated.

In the implementation of Hi-DMM, the DMM allocators
are also HLS modules separate from the accelerator. To avoid
conflicts of data and control, each allocator accounts for a sin-
gle heap. Hi-DMM provides a library of allocators, including
fast buddy tree allocator (FBTA), preallocation tree allocator
(PATA), hybrid tree allocator (HTA), and K-way tree alloca-
tor (KWTA) which are compared in Table II. The detailed
implementation of allocators’ mechanism will be discussed
in Section V. Each of these allocators has unique character-
istics so that they are suitable for different requirements of
applications, e.g., various granularities of allocations, interval
of allocations, and the number of MAUs (i.e., the depth of
heap).

DMM project generator will select one of these alloca-
tors for each heap and configure it with the parameters
from analyzer. For the selection of allocators, Hi-DMM has
a table that contains the details of FPGA resource con-
sumption, performance and management capability of the
allocators. Based on this table, Hi-DMM takes the follow-
ing factors into consideration: allocation granularity, FPGA
resource constraints, the management capability of alloca-
tors, the performance and resource requirement of allocators
themselves, etc.

For example, in Code 1, the allocations of tree nodes are
types of CFGA and KWTA achieves lower latency for these
frequent allocations and requires less area for the allocator
itself. However, since KWTA is an allocator for fixed-size
memory blocks, when handling allocation request with vari-
able size, it will lead to high memory fragmentation for the
heap. Therefore, for allocation of a[] and b[] which requires
VGA, FBTA, PATA, and HTA are better candidates. If the
number of MAUs is large, Hi-DMM will choose HTA for
these dynamically allocated arrays. Note CCGA, e.g., c[] can
share heap with VGA.

For the communication between allocators and accelera-
tor, I/O ports in the top module of accelerator, connected
to allocators, will be instantiated according to the number of
allocators. Based on HLS handshake protocol, these ports are
implemented with associated valid and acknowledge signals
to provide a two-way handshake.

2) Source-to-Source Transformation: Source code transfor-
mation makes the HLS accelerator adapt to DMM components
and guarantees high DMM performance. Code 2 is an example
of the output of transformation.

The purpose of the replacement of function calls is to assign
allocation function calls to specified allocators, which has
been determined by the process of heap generation. The orig-
inal function malloc((size_t) and free(void *) will be replaced
by the particular API functions in the Hi-DMM library, e.g.,
HTA0_malloc(int size, DMM_port* port) and HTA0_free(int
addr, DMM_port* port).

Moreover, since Hi-DMM supports the dynamic alloca-
tion of user-defined struct (“struct” in C), the accesses of
the components of these structures are also transformed into
expressions based on pointers and offsets.

It is important to ensure that the directives, involving
dynamically allocated pointers, are supported during the HLS
but VivadoHLS cannot support the DAM partition work-
ing with loop unrolling. For static arrays, array partitions
can be mapped to corresponding iterations of loop and if
the loop is unrolled, the accelerator can benefit from the
high bandwidth [13]. However, the partitions of DAM can-
not map to the loop iterations because DAM have uncertain
offset in the heap which means the starting address of the
array in the heap is unknown. To overcome this issue, Hi-
DMM first partitions the heap where the partitioned dynamic
array is allocated, and then separates the original loop into
two loops. The first loop will process a few of elements
and the second loop always starts processing from the ele-
ment in the partition zero (e.g., P0 in Fig. 4) so that
VivavdoHLS can know which partition the following element
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Fig. 4. Array partitioning and loop unrolling with Hi-DMM (partition
factor = unroll factor = 4, offset of c[] = 2).

Fig. 5. OR-gate tree and AND-gate tree based on eight MAUs.

is in and map partitions to the iterations of the second
loop.

An example of loop transformation is shown in Fig. 4 and
Code 2, where the partition factor of HTA0_heap is 4 and the
offset of c[] in HTA0_heap is 2. First, according to the directive
of cyclic loop partition, the heap will be partitioned equally
into four partitions. The array elements in each of the partition
are shown as in Fig. 4. We derive the equation and make the
resultant pointer loop0_c point to c[2], which is the element
located in the partition P0 of HTA_heap0. separate_loop0 is
the array index of c[2] which is 2. Therefore, the second loop
after transformation will start with accessing the partition 0
of HTA0_heap certainly. As a result, VivadoHLS can map the
elements in loop0_c to the iterations of the second loop so
that loop unrolling will be successful.

After the generator finishes, a Tcl script is used to
interconnect the accelerator and the allocators, handle ports
and wires automatically, and finally generate a complete
project with DMM.

V. HI-DMM ALLOCATORS

This section discusses the implementation of Hi-DMM
allocators.

A. Conventional Buddy Tree Allocator

As shown in Fig. 5, buddy tree allocator splits the entire
space of heap repetitively in half, to find an available memory
block best fitting the size of request. Based on the buddy tree,
the number of MAUs managed by the allocator is a power
of 2, and the resultant two blocks from a split are buddies,
which can be merged into a double-size block when both are
available for larger requests.

1) Representation of Buddy Tree: Proposed by
Chang and Gehringer [4] and adopted by Xue and Thomas [8],
OR-gate BVs and AND-gate BVs are used to maintain the
memory usage of the heap and one BV accounts for

the information of a particular depth of the buddy tree.
Supposed that the allocator is designed to manage 2D MAUs.
Accordingly, the buddy tree will have a depth of D, as the tree
shown in Fig. 5, which has a depth D of 3 and can manage
8 MAUs. Each node located in the layer at the depth of DL

represents a memory block with size of 2D−DL MAUs and a
2DL -bit vector BVDL of the layer can be used to record the
status of these nodes, in which the ith node is mapped to the
bit BVDL(i). A bit in the OR-gate BV of the layer, BVOR

DL
(i),

indicates the ith memory block in this layer is empty when it
is 0, otherwise, the value of the bit will be 1. As for a bit in
the AND-gate BV of the layer, BVAND

DL
(i), it will be 1 only

if the corresponding memory block is full. Based on this,
the allocator will handle the (de-)allocation requests via two
stages, (de-)allocation stage and maintenance stage.

For conventional buddy tree, each layer will be first
described with a BV, BVOR

DL
based on OR-gate from leaves

to root. The leaves of buddy tree represent the availability of
MAUs and an entire OR-gate tree can be built from the leaves
to the root according to the following equation:

BVOR
DL

(i) = BVOR
DL+1 (2i) ∪ BVOR

DL+1 (2i + 1). (1)

The OR-gate tree can indicate the availability of memory
blocks in the DLth layer with BVOR

DL
, where the first zero bit

represents an available block for the request with size ranging
from 2D−DL to 2D−DL−1 + 1.

In order to find the first zero bit, the specified OR-gate BV
will be fed into an AND-gate tree as leaves. For example, in
Fig. 5, the second layer of OR-gate tree will be the input of
AND-gate tree, when searching a 2-MAUs block for alloca-
tion. Only when both children nodes are allocated, the node
can be marked as full. Therefore, AND-gate buddy tree can
be constructed according to the following equation:

BVAND
DL

(i) = BVAND
DL+1(2i) ∩ BVAND

DL+1 (2i + 1). (2)

The AND-gate tree can propagate availability information
upward toward the root in such a way that the location of
the first zero in BVOR

DL
can be found by a nonbacktracking

search from the root to the target leaf by tracking the child
node with a value of 0, with a time complexity of O(log(N)).

2) Allocation Stage: Suppose the size of the incoming
request ranges from 2D−DL to 2D−DL−1 + 1. The allocation
stage begins with the search based on AND-gate tree. Then,
if the first zero bit is found at the ith lowest position of
the bit-vector BVOR

DL
, the resultant memory address will be

2D−DL ·(i−1). For example, if searching for a 2-MAUs block,
the allocator will go through nodes 0, 3, and 7 of AND-gate
tree. Then, because node 7 is the fourth node at the depth
of 2, the allocated address should be 6. After allocation, the
allocated bits in the corresponding BVs will be flipped.

3) Deallocation Stage: Since the information of previous
allocation has already been recorded during allocation stage,
the action of freeing a memory block flips the correspond-
ing bit in the OR-gate BV and takes much less time than
allocating one.

4) Maintenance Stage: Marking downward and marking
upward in this stage maintain the allocation information for
latter requests. The procedure of marking downward starts
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from the layer of OR-gate buddy tree, which is located in allo-
cation stage according to the request size, to the bottom layer.
During marking downward after allocation, for each layer, the
bits covered by the allocated block will be set to 1. In contrast,
those bits will be set to be 0 after freeing. For instance, if the
node 7 of OR-gate tree in Fig. 5 is allocated, nodes 14 and 15,
will be marked with 1.

To mark upward, all the upper layers need to be updated,
by setting their BVs according to (1) and (2).

As noticed, the search of allocable memory block and the
maintenance of the buddy tree are the major workload of
buddy tree allocators and both of these procedures are the
performance bottlenecks for the allocator.

B. Proposed Hi-DMM High-Performance Allocator

To get rid of long critical path of [4] and high latency cycles
of [8], Hi-DMM makes full use of the techniques of HLS.
As presented in Section IV-B, we propose four variants of
conventional buddy-tree-based allocators: 1) FBTA; 2) PATA;
3) HTA; and 4) KWTA. These allocators can be grouped for
one design, thus providing designers with the flexibility to
adapt DMM to various behaviors in one application. All these
allocators are described in C and implemented in HLS. The
detailed implementation of these allocators will be presented
in this section.

1) Fast Buddy Tree Allocator: To overcome the limitations
of previous works, some HLS techniques are applied to the
representation of buddy tree and the mechanism of allocation
and maintenance.

a) Buddy tree without AND-gate tree: As mentioned in
Section V-A, previous buddy tree allocators can get trapped
in the search of the first zero bit in the OR-gate BV. In [4],
the AND-gate and the OR-gate trees are described as combi-
national logic resulting in long critical path. The work in [8]
inserted registers to break the critical path but led to hundreds
of steps to perform the search. Without AND-gate tree in [8],
FBTA extracts the first zero bit via direct bitwise operations
on the OR-gate BV [14], which is illustrated in the next.

b) Allocation stage based on bitwise and arithmetic
operators: By inverting the bit-vector BVOR

DL
into BV′, the

first-zero search problem is turned into finding the lowest set
bit of BV′. By subtracting 1 from BV′, we can clear the low-
est set bit of BV′ but all the other one bits in BV′ remain set.
Thus, [BV′&inverse(BV′ − 1)] consists of only the lowest set
bit of BV′. These operations can be grouped into the following
equation:

Let BV′ = inverse
(

BVOR
DL

)
(3)

MASKfirst_zero = BV′&inverse(BV′ − 1). (4)

MASKfirst zero in (4) will indicate the lowest zero with 1 while
the other bits will be 0. For example,

if BVOR
DL

= b′00111011

MASKfirst_zero = b′00000100.

MASKfirst zero can be translated into the actual location
number of the first zero bit in the bit-vector BVOR

DL
, with

(a)

(b)

(c)

Fig. 6. Parallelism between allocator and accelerator. (a) SysAlloc: acceler-
ator needs to wait for the maintenance of allocator. (b) Hi-DMM: accelerator
operations overlap with the maintenance of allocator. (c) Hi-DMM: preallo-
cation scheme.

an MUX-based base 2 logarithm calculator. In this way, the
latency of searching the first zero bit decreases significantly
from the time complexity of O(log N). For instance, to find the
first zero bit in a 64-bit vector, the latency of allocation stage
based on FBTA is only four cycles at 100 MHz. By grouping
these 64-bit vectors and searching concurrently among them,
FBTA can manage hundreds of MAUs much quicker. Note that
the location of layer and the communication between acceler-
ator and allocator cost 4 cycles so that the overall latency of
allocation stage will be 8 cycles.

Moreover, in previous works, the accelerator needed to wait
for the allocator to finish not only allocation but also mainte-
nance, as shown in Fig. 6(a). However, since the maintenance
stage of allocator does not rely on any information from the
accelerator, overlapping the maintenance of allocator with the
subsequent actions of the accelerator can hide the latency of
maintenance stage from the accelerator, as shown in Fig. 6(b).

c) Maintenance stage based on parallelism: In the
implementation of [8], marking upward is done after marking
downward. However, these two procedures actually process
different objects and there is no dependence between them.
Thus, in FBTA, they are executed concurrently. The work
in [8] inserted registers between stages manually which may
not be the optimal solution and can be replaced by HLS opti-
mized solution. In Hi-DMM, the process of maintenance is
pipelined by using HLS directive thus achieving higher hard-
ware parallelism, which could be hard to implemented at RTL
level by manual analysis. With these improvements, as an
instance, to maintain a buddy tree with depth of 7, it only
costs FBTA 7 cycles on average at 100 MHz.

2) Preallocation Tree Allocator: Although FBTA improves
the performance of allocation to a large extent compared
to previous works, the latency of allocation stage can still
be a bottleneck when there are frequent requests for DMM
allocation.

a) Allocation locality: By analyzing applications with
DMM, we notice that most requests of DMM allocation
present allocation locality, in both the temporal aspect and
spatial aspect. Temporal locality of allocation means that
when one request of allocation occurs, it is usually followed
by multiple allocation requests. Spatial locality of allocation
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indicates that when one request of allocation occurs, the fol-
lowing requests are usually in the same type of allocation and
they are likely to request for similar size of memory. These
characteristics of allocation locality are general results from
the initialization of accelerator and DMM allocation in loops.

b) Preallocation scheme: Based on this characteristic
of applications, preallocation scheme is proposed to find the
proper address for the same type allocation with similar size
before the arrival of next request so that the latency of
searching address can be hidden for those requests.

The scheme of preallocation is shown in Fig. 6(c). Suppose
that the allocator has just finished an allocation of memory
block, size of which ranges from 2D−DL to 2D−DL−1 +1. After
the maintenance, allocator will try to preallocate a memory
block at the same layer of buddy tree but information of
which will not be marked in the buddy tree. Such prealloca-
tion can also be hidden from the requesting accelerator. When
a new request comes, the allocator will first check whether the
request size is in the range from 2D−DL to 2D−DL−1 +1. If the
size of request hits the memory block preallocated, the address
for the allocation will be provided immediately without wait-
ing for address searching. Thus, the latency of allocation stage
will be just the time for checking the size and the overhead
of communication, which is 3 cycles in Hi-DMM. Then, the
maintenance will mark the preallocated memory block in the
buddy tree. Otherwise, if the size of request is out of the range,
the preallocation will be abandoned and the allocator will start
the search of the first-zero bit.

3) Hybrid Tree Allocator: Although FBTA and PATA pro-
vide high-performance solution to DMM, when the number of
MAUs is raised to more than 512, their consumption of area
will be increased notably because of the large width of BVs
array in HLS and high parallel computation between them.
Therefore, FBTA and PATA perform quite well for coarse-
grained allocation, such as the allocation of arrays, for which
designers can define MAU with large size, for example, 1 KB,
so that there would not be too many MAUs. However, the
solution based on large MAU is not suitable for fine-grained
allocation because it will lead to serious memory fragmen-
tation issues resulting in wasted memory. To overcome this
limitation, HTA, provided by Hi-DMM, adopts the basic hier-
archical idea based on group tree from SysAlloc to store
the information of buddy tree, which can save a lot of area.
However, HTA does not rely on the search based on AND-
gate tree so that it takes less than 20 cycles to accomplish
the allocation request for thousands of MAUs, instead of suf-
fering the long allocation latency (hundreds of cycles) of
SysAlloc.

a) Structure of hybrid tree: The hybrid tree consists of
two different kinds of layers, trunk layers and branch layers,
as shown in Fig. 7. The depths of trunk and branch parts of a
hybrid tree are DT and DB, respectively. Based on the hybrid
tree structure, HTA can manage 2DT+DB MAUs. The trunk
part of hybrid tree is described in the same way as FBTA
but leaves in the trunk part, e.g., the nodes 4–7 in Fig. 7,
are mapped to a corresponding group tree in branch layer,
indicating whether a large memory block is available. As for
the branch layers, group trees are used to manage fine-grained

Fig. 7. HTA: trunk layers and branch layers.

allocation and each of their leaves is mapped to an MAU. To
locate an available memory node with small size efficiently,
these group trees are described by two different kinds of BVs,
layer BV and group trees BV. Each branch layer has its own
layer BV, and each bit of layer BV accounts for the status
of a specific layer of a group tree, indicating whether the
group tree has available nodes in the specified branch layer.
For example, in Fig. 7, both of the first two layer BVs (01 . . .)
indicate that the first group tree has available node in the lay-
ers while the second group tree does not. In contrast, the third
layer BV (00 . . .) indicate that both two group trees have avail-
able nodes in the third layer. Each group tree in the branch
part can be described within a group tree BV, where each bit
indicates the status of a node of the group tree. Therefore,
if the tree in trunk layer has 2DT leaves, there will be 2DT

group trees in branch part and the width of each layer BV
will be 2DT . Similarly, the width of group tree BV should be
2(DB+1) − 1.

b) Allocation stage of HTA: The requests of allocation
are classified into coarse-grained and fine-grained according
to their sizes. A request, size of which is greater than 2DB−1,
is coarse-grained. The allocation for this request will only
involve the trunk part of hybrid tree. The process of coarse-
grained allocation will be the same as FBTA. In contrast,
fine-grained allocation will involve group trees in branch part
of hybrid tree. According to the request size, HTA locates
the target layer for allocation in branch part. Based on the
corresponding layer BV, HTA can find which group tree has
space for the request by searching the first zero bit in the
layer BV. Finally, techniques of FBTA will be applied on the
located group tree and the address of allocable block will be
obtained. Since HTA conducts the search of first zero bit twice
for fine-grained allocation, the latency of allocation stage will
be about two times more than FBTA.

c) Maintenance stage of HTA: The maintenance for
trunk part and the group tree BV of branch part can be imple-
mented according to the definition of OR-gate tree. Note that
the maintenance after allocation of a node in the buddy tree is
known during compilation. Therefore, Hi-DMM maintains the
group tree BV by applying an OR operation with a mask BV
to it. These mask BVs can be grouped into a look-up table so
that the maintenance of group tree BVs requires lower latency.
For example, if node 14 is allocated, then nodes 7, 28, and 29
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should be marked as 1 and the corresponding mask BV is
0011011. As for the layer BVs, when the request is coarse-
grained, all of them are only involved in marking downward
and the operation applied on the BV of leaves in trunk layer
can be passed to these layer BV directly. However, when the
request is fine-grained, each layer BV for branch layer needs
to be handled according to the status of the group tree. Since
only the bits for the target group tree in layer BVs are involved
in maintenance, the computation overhead is low. Moreover,
since the layer BVs are independent of each other, HTA can
update them concurrently.

4) K-Way Tree Allocator: The allocation for the compo-
nents in dynamic data structures, e.g., tree, are fine-grained and
frequent. Therefore, even FBTA, PATA, and HTA can be the
performance bottleneck for these accelerators. However, most
requests for these allocations are usually C struct with con-
stant size. Considering this characteristic, Hi-DMM provides
designers with high-performance fixed-size allocator based
on K-way tree which can handle more than 2048 fixed-size
blocks.

a) Structure of K-way tree allocator: The structure of
KWTA is a K-way AND-gate tree with depth of 2 instead
of the binary OR-gate tree for other allocators in this paper.
An example of a 8-way tree is shown in Fig. 8. The first
layer is summary layer and the second one is leaf layer. Each
node marked with zero in summary layer has available child
(children) and each node marked with zero in leaf layer rep-
resents an available mini-heap, a small memory space with
constant size, which can hold one or more fixed-size blocks.
Each mini-heap is maintained by two registers, Allocated and
Freed. Allocated records how many fixed-size blocks have
been allocated in the mini-heap, no matter whether they have
been freed or not, while Freed records how many fixed-size
blocks have been freed from the mini-heap.

b) Allocation stage of KWTA: By applying the search
of the first zero bit twice on the BVs of K-way AND-
gate tree, an available mini-heap will be located. According
to the offset of the leaf Offsetleaf, the size of mini-heap
Sizemini−heap and the register Allocated, the allocated address
will be [Offsetleaf · Sizemini−heap + Allocated]. Note that the
allocation in a mini-heap is one-way, which means the fixed-
size blocks will be allocated from the head of mini-heap to the
tail, according to the increasing value of the register Allocated,
even if there are some freed space at the head. In this way,
the latency of allocation stage will be decreased. Moreover,
the mini-heap will be recorded if the value of its register
Allocated is smaller than the size of mini-heap, so that the
next request will not need any search. The allocation of a new
mini-heap will cost 9 cycles based on 64-way tree. However,
if the allocation can be handled by the recorded mini-heap,
the latency will be just 1 cycle. As the size of mini-heap
increases, the average latency of allocation stage will decrease
significantly, because each allocated heap can be recorded for
several subsequent requests. For example, when the size of
mini-heap is 16, the average latency of allocation stage is 1.5
cycles.

c) Maintenance stage of KWTA: After each allocation in
the mini-heap, the value of register Allocated will be increased

Fig. 8. KWTA: summary layer and leaf layer.

by 1. If the value of register Allocated is equal to the size of
mini-heap and the value of register Freed is smaller than that
of register Allocated, the corresponding leaf in K-way tree will
be marked with 1, indicating that it is unavailable. In contrast,
after each de-allocation, the value of register Freed will be
increased by 1 and if the value of register Freed is equal to
that of register Allocated, the corresponding leaf in K-way tree
will be marked with 0 and both registers will be reset to 0.
The summary layer will be updated according to the definition
of AND-gate tree. In other situations, the value of the leaf in
K-way tree will not be changed.

As an example presented in Fig. 8, the BV value of node
34 is 1, indicating the mini-heap is unavailable, because the
value of register Allocated is 4, equal to Sizemini−heap . Since
3 blocks have been freed in the mini-heap, one more de-
allocation in this mini-heap can make it available again and
reset the value to 0.

VI. EVALUATION OF HI-DMM

We conduct the evaluation of Hi-DMM using Zynq-7000
SoC XC7Z0-20 with FPGA fabric operating at 100 MHz. All
of the four Hi-DMM allocators, implemented with VivadoHLS
(v17.2) are packaged as intellectual property cores using
Vivado (v17.2). As mentioned in Section IV-B, the HLS accel-
erator requests the allocation of memory from these allocators
via HLS handshake protocol. Each accelerator can be inte-
grated with more than one allocators to adapt to various
allocations. All the data of buddy tree are stored in BRAM.

A. Performance and Cost of Hi-DMM Allocators

1) Management Capability and Utilization of Resource:
For each type of allocator, the utilizations of LUT and BRAM
are presented in Fig. 9(a) and (b). FBTA and PATA have
the same utilization of BRAM as they use the same method
to store buddy tree. To handle the same number of MAUs,
PATA will cost 36% area more than FBTA on average, due to
PATA’s extra logic for preallocation scheme. Noticeably, the
costs of area, for FBTA and PATA, increase significantly when
the number of MAUs is more than 256 though they are low-
latency allocators. Their utilization of LUT and BRAM exceed
19% for those situations due to the large width of BVs, which
might be not acceptable for some applications. That is the
major reason why we propose HTA, which uses less resources
but still takes much lower latency compared to SysAlloc, by
searching address based on bitwise-operation and maintaining
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Evaluation of Hi-DMM allocators compared with SysAlloc. (a) LUT utilization. (b) BRAM utilization. (c) KTWA: utilization of memory. (d) Latency
of allocation stage. (e) Actual allocation latency. (f) KTWA: reusage of memory.

the buddy tree with look-up table of mask. For heaps with a
large number of MAUs, it is more reasonable to use HTA than
FBTA and PATA. As indicated in Fig. 9(a) and (b), KWTA
can handle more than 2048 MAUs at very low cost of area.
Most of those applications, requiring large management capa-
bility of the allocator, usually use DMM to deal with dynamic
data structures, e.g., tree and graph. For example, SysAlloc
tested its management capability of 32 K MAUs based on an
application with dynamic list. The allocations for these data
structures, e.g., a node in tree, are fine-grained and fixed-size.
Therefore, using allocator based on complex buddy tree for
these applications can be a waste of area and, instead, KWTA
can perform efficiently in these applications. Even compared
to previous fixed-size allocator DOMMU [5], KTWA costs
less area while performs lower allocation latency. Moreover,
DOMMU increases the BRAM access latency due to address
translator but KTWA does not have this limitation.

2) Management Capability and Allocation Latency: For
single allocator of the different types, the latencies of allo-
cation stage are shown in Fig. 9(d). Note that for comparison,
keeping the same total overhead, we scale the latencies of
SysAlloc according to the clock rate from 150 to 100 MHz.
As presented, the average latencies of SysAlloc is 83 for 256
MAUs and 81 cycles for 32 K MAUs. For each kind of alloca-
tors, the latency of allocation stage of a request only depends
on the management capability of allocator and the granularity
of request size, since they determine the overhead of searching
allocable addresses. We implemented a generator of requests
with random sizes. To handle a certain number of MAUs,
FBTA has a constant latency of allocation stage while other Hi-
DMM allocators have variable latencies of allocation stage. In
the case of HTA, searching a node in the trunk part for coarse-
grain allocation, the allocation stage takes 7–8 cycles, while
for fine-grained allocation which involves the branch part, it
takes 12–19 cycles. For PATA, if the request of allocation hits

the preallocated block, the latency will be 3 cycles. In case of a
miss, the latency is 9–12 cycles. Similarly, when the request to
KWTA can be handled by the recorded mini-heap, the latency
of allocation stage is 1 cycle instead of 9 cycles to allocate a
new mini-heap.

However, the actual allocation latency is not simply equal
to the latency of allocation stage which can be treated as a
lower bound. In some cases, a request may come to an allo-
cator when the allocator has not finished the maintenance of
a previous allocation. As result, the latency of maintenance
cannot be completely hidden from requesting accelerator and
the requesting accelerator needs to wait for the completion
of maintenance. Therefore, the actual allocation latency is
also affected by the latencies of maintenance stage, shown in
Table II, and the intervals between the response of last request
and the following request. By generating requests with random
sizes and at different intervals, the actual allocation latencies
for different allocators managing 256 MAUs are shown in
Fig. 9(e). With the interval increasing, the actual latencies of
allocators will decrease until the interval covers the mainte-
nance of allocators. Though PATA has lower allocation latency
bound than FBTA, the actual allocation latency of PATA can be
greater than that of FBTA due to higher maintenance latency
of PATA. Therefore, PATA is suitable to those applications
involving similar requests with relatively large intervals.

3) Memory Utilization and Reuse: We also evaluate
the memory (BRAM for Xilinx FPGAs) utilization of the
proposed allocators.

For FBTA, PATA, and HTA which are based on binary
buddy tree, unless requested sizes is in the set of provided
sizes, a power of 2, the allocator will allocate more memory
than requested. Such a waste of memory is intrafragmenta-
tion. The extent of intrafragmentation depends on the set of
provided sizes and the distribution of request sizes. According
to the calculation in [15], for buddy system, asymptotic value
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of intrafragmentation ranges from 25% to 33% of memory,
based on a uniform distribution of request size.

However, KTWA is an allocator for fixed-size blocks based
on mini-heaps and one-way allocation scheme and has differ-
ent issue of memory utilization. The experiments for KWTA is
conducted with a generator of random requests. For each step
of the test, the generator first determines allocation and de-
allocation with equal possibilities and then generates a number
of the same requests continuously. The number of continu-
ous requests for each step is based on a uniform distribution
with an average. We assume each application can be repre-
sented by a corresponding average. We collect the statistics
of utilization and reusage of memory when the first failure of
allocation occurs due to all the mini-heaps marked unavail-
able. The reusage of memory is defined as the ratio of the
number of allocation requests to the management capability of
KWTA. The related results, based on a KWTA managing 4096
MAUs, are presented in Fig. 9(c) and (f). As demonstrated in
the figure, the utilization of memory, slightly impacted by the
average number of continuous requests, will decrease as the
size of mini-heaps increase, because a freed block will be
available after all the blocks in a mini-heaps are freed and
a larger mini-heap may take a longer period to be cleared.
However, designers may be more concerned about the reusage
of memory since it means how many allocation requests can
be handled by KTWA before overflow occurs. As presented
in the figure, the reusage of memory will decrease if the size
of mini-heaps increases, but the average latency of KTWA
allocation will be lower with larger mini-heaps, as mentioned
in Section V-B4. Moreover, KTWA can achieve high memory
reusage (≥50) for those applications with relatively small aver-
age number (≤16) of continuous requests, even with the size
of mini-heap greater than 4. Therefore, designers need to set an
expected reusage of memory and an estimated average num-
ber of continuous requests of the application and Hi-DMM
will choose the largest size for mini-heaps that meets the
requirements to reduce the average latency.

Hi-DMM will assign allocators to heaps according to the
curves in Fig. 9 to improve allocation performance for a target
FPGA.

B. Impact of Configurations on Application

As mentioned in Section IV, it is necessary for Hi-DMM
compiler to optimize the configuration of DMM components
under designers’ guide for the sake of the performance of
accelerators. In this section, the experiments are used to
explore how the configuration impacts the overall performance
of allocator instead of memory utilization, which is analyzed
in Section VI-A. The most significant factors in configurations
are the assignment of pointers to heaps, the adaption to HLS
directives and the selection of allocator. For each of them,
we use a corresponding application, involving common DMM
and HLS behaviors, to explain its impact. In the experiments,
the applications are the common processes in HLS designs,
e.g., matrix multiplication, reduction operation, and interaction
of dynamic data structures. The three applications are listed
as below and the results are given in Table III, with the

TABLE III
IMPACT OF HI-DMM CONFIGURATIONS ON APPLICATION

overall latencies of the execution of accelerators. We explore
the impacts of pointer assignments and loop transformation
based on application A and B, respectively. Moreover, for
KWTA and HTA, which have similar management capability,
we compare their performance based on application C.

A: Calculation with multiple matrices does the matrix com-
putation ABCD+EF. It can show the effect of the assignment
of pointers to heaps. The number of heaps is 2. Four dynam-
ically allocated arrays, W, X, Y, and Z, will be involved to
store intermediate results. W, X, and Y will co-operate to do
a matrix multiplication and then W and Z will be processed
for matrix addition. Hi-DMM reduces 6.01% of runtime by
assigning W and X to one heap, and Y and Z to the other one.

B: Sum reduction with unrolled loop and partitioned arrays
reduces a 2-D array to a dynamically allocated 1-D array
with both loop unroll factor and array partition factor being 4.
It demonstrates the improvement by adapting DMM to HLS
directives. Hi-DMM separates the inner loop of 2-D reduction
into two loops according to Section IV so that tools like Vivado
HLS can optimize the performance of the unrolled loop. The
resultant runtime of application is a range, 412–812 cycles,
since it depends on the exact allocated address of correspond-
ing dynamic array, which leads to different latency of the first
loop after loop separation.

C: Shortest path faster algorithm is a queue-based improve-
ment of the Bellman–Ford algorithm which computes single-
source shortest paths in a weighted directed graph. Hi-DMM
will automatically choose KWTA for the dynamic queue, since
it can perform allocation with average latency of 1.5 cycles
for the dynamic data structure. For comparison, we repeat the
experiment but use HTA to handle the queue, which leads
to average allocation latency of 12.0 cycles. According to
Table III, KWTA can reduce the runtime of application by
5.64%. When KWTA is applied, the allocation latency only
takes up 0.84% of runtime but it increases to 6.34% when
HTA is applied. If HTA is replaced by SysAlloc allocator, the
allocation latency will be more than 40% of runtime. Note
that preallocation scheme can help HTA reduce the average
allocation latency by 25.5%.

VII. CONCLUSION

This paper presents Hi-DMM, a DMM platform for
HLS, covering the analysis and transformation of the HLS
source code and providing designers with flexible and
high-performance allocators based on optimized buddy tree
algorithm. For future work, the management capability of HTA
will be extended to more than 128 K MAUs and the impact
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of DMM behaviors should be further analyzed based on HLS
to improve the efficiency of accelerator. The source code of
Hi-DMM and of the applications used in Section VI-B can be
found at http://ece.ust.hk/∼eeweiz/tools.html.
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