
Hi-ClockFlow: Multi-Clock Dataflow Automation
and Throughput Optimization

in High-Level Synthesis
(Invited Paper)

Tingyuan Liang∗, Jieru Zhao∗, Liang Feng∗, Sharad Sinha† and Wei Zhang∗
∗Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology, Hong Kong
Email: tliang@connect.ust.hk, jzhaoao@connect.ust.hk, lfengad@connect.ust.hk, wei.zhang@ust.hk

†Computer Science and Engineering Department
Indian Institute of Technology (IIT), Goa, India

Email: sharad sinha@ieee.org

Abstract—Tools of high-level synthesis (HLS) are developed
to improve the accessibility of FPGAs by allowing designer to
describe hardware designs in high-level language, e.g. C/C++.
However, the source codes of general applications are not
structured as canonical dataflow. Furthermore, clock frequencies
are powerful parameters to improve dataflow throughput but
currently commercial HLS tools limit themselves to single clock
domain. Consequently, in order to benefit from the multiple-clock
dataflow design, designers still suffer from manually analyzing
the applications, partitioning the source code into modules,
optimizing them with appropriate parameters and resource
allocation, and finally interconnecting them. We analyze the
impact of multiple clock domains for HLS designs and present
Hi-ClockFlow, an automatic HLS framework. Hi-ClockFlow can
analyze the source code based on Light-HLS, our light weight
HLS evaluation framework, explore the large design space,
and optimize such parameters as clock frequencies and HLS
directives in dataflow. By properly partitioning the source code
of an application into parts with various clock domains, Hi-
ClockFlow can optimize the dataflow with imbalanced modules
and speed up the performance under the specific constraint of
resource.

Index Terms—High-Level Synthesis, Dataflow, Multiple Clock
Domains, Globally Asynchronous Locally Synchronous, Automa-
tion, Design Space Exploration

I. INTRODUCTION

Field-programmable gate array (FPGA) can achieve high
throughput, low latency and less energy overhead for many
applications, especially such dataflow designs as image pro-
cessing and machine learning. High-level synthesis (HLS) is
proposed to improve the accessibility of FPGAs by employing
high-level language, e.g. C/C++, to describe hardware designs.
Moreover, FPGA provides much more flexibility, including
the configuration of multiple clocks and different levels of
parallelism, for designers to achieve their optimal solutions.

To implement dataflow in HLS, designers need to first par-
tition the source code into modules so the task-level pipeline
can be realized by HLS tools. Then, proper HLS directives and
clock periods should be assigned to the modules to optimize
the overall throughput. The resource and timing of modules

are sensitive to the clock period. Consequently, multiple-clock
designs allow the modules in dataflow to do a more flexible
trade-off between resource and performance.

Nevertheless, currently commercial HLS tools still require
designers to manually analyze the applications and assign
resource and clock domains to the modules in dataflow.
Furthermore, the tools limit themselves to single clock domain
and hence, it is hard for dataflow designs to benefit from the
multiple clock domains. For example, some HLS directives
may be incompatible with the given timing constraint and the
scheduling and binding of the design will change significantly
as the clock frequency changes.

To expand the design space and find the optimal solution to
multiple-clock dataflow, we present Hi-ClockFlow, an open-
source automatic HLS framework, which is coupled with
Vivado and VivadoHLS, the platforms developed by Xilinx.
Hi-ClockFlow can analyze and transform the source code of
an application into partitions with various clock domains prop-
erly. The partitions will co-operate as globally-asynchronous
locally-synchronous (GALS) dataflow. In brief, Hi-ClockFlow
is to conduct HLS design space exploration (DSE) to find the
proper settings of multiple clock domains and HLS directives
to optimize the throughput of the dataflow application. To our
best knowledge, Hi-ClockFlow is the first framework which
realizes the automatic optimization for multiple-clock HLS
dataflow design on FPGA, with its highlights shown below:

1) General HLS C/C++ source code of application is the
input of Hi-ClockFlow, which will be analyzed by Light-
HLS, our light weight HLS evaluation framework.

2) HLS directives for each module can be automatically
set by Hi-ClockFlow to optimize the throughput and the
consumption of resource.

3) Clock domain for each module is determined by Hi-
ClockFlow to achieve high throughput.

II. RELATED WORKS

Conventionally, the previous works in multiple-clock de-
signs are in RTL level and mainly focusing on high-
performance FIFOs implementation, handshake protocols or
other device level implementations. For example, in the
GAPLA architecture [1], the size and shape of each locally
synchronous block are programmable and data communica-
tions between synchronous blocks are controlled by 2-phase
handshaking signals. In [2], Royal et al. proposed to use GALS
techniques for FPGAs to overcome the limitation on timing
imposed by slow routing.

As for multiple-clock designs in HLS, there are also some
works proposed using GALS technology. LegUp [3], an open-
source HLS tool, was extended to automatically insert clock-
domain-crossing circuitry for signals crossing between two
domains. The scheduling and binding phases of HLS are
changed to reflect the impact of multiple clock domains on
memory. However, they mainly focus on the implementation
of the clock domain crossing (CDC) interface, based on Block-
RAMs, and the related problem of scheduling and binding.
The exploration of parallelism in multi-clock situation is not
considered. Furthermore, the selection of frequency of each
clock domain is left to designers and the assignment of clock
domains is coarse-grained. Mamaghani et al. developed a
series of platforms [4] [5] to support asynchronous dataflow
and proposed the technique [6] to handle the clock automati-
cally. Nevertheless, in their multiple clock designs, clocks are
simply set based upon the ”local” critical path delays and they
assumed that the change of frequency would not change the
scheduling and binding of HLS components and common HLS
directives are not applicable.

In order to optimize the design performance through DSE,
multiple clock domains in the dataflow design bring different
challenges. Zhao et al. proposed a comprehensive model-based
analysis framework, COMBA [7], which selects suitable HLS
directives and aims at lowering the overall latency of an
application given certain FPGA resource constraints. Different
from COMBA, our framework can automatically partition the
source code into different clock domains and conduct DSE
for all the partitions to optimize the overall throughput. Cong
et al. brought a model targeting at a well-defined accelerator
microarchitecture [8] and thus it featurs a highly accurate mod-
eling of the utilization of the FPGA on-chip resources, while
our framework targets at more general C/C++ descriptions.
Shao et al. implemented Aladdin [9], a pre-RTL light weight
HLS tool, as a power-performance accelerator simulator for
System-on-Chip architecture exploration. However, Aladdin
has set many assumptions for the HLS design, for example,
not including DSP and the delay of function units is always
one cycle, hence, the simulation may not be accurate enough.
Moreover, all the above frameworks do not support multi-
clock designs. Compared to them, Hi-ClockFlow focuses on
the optimization of multi-clock dataflow.

Considering dataflow optimization itself, there are several
papers optimizing from different angles. Li et al. [10] [11]

developed an algorithm to find the optimal resource usage
and initiation intervals for each loop in the applications to
achieve maximum throughput under a given area constraint.
However, loop unrolling, array partitioning and dataflow were
not considered in their work, which means that under their
assumption, their design space of application is relatively
small and the throughput might not be the optimal one
under the specific resource constraint. Finally, their integer
linear programming based solution might not be suitable for
large-scale applications. There are also application-specific
frameworks for some applications like CNN [12], However,
those frameworks are limited in specific domains.

III. MULTIPLE CLOCK DOMAINS
IN HLS-BASED DATAFLOW

For single clock design, commercial HLS tools, like Xilinx
VivadoHLS, can enable task-level pipelining by allowing func-
tions and loops to overlap in their operation and increasing the
overall throughput of the design. However, they do not allow
designs to be configured with multiple clock domains. In this
section, the mechanism how we make multi-clock dataflow
work will be shown and the impact of multiple clock domains
in HLS-based dataflow will be discussed as the motivation of
this work as well as the corresponding challenges.

A. Mechanism of Multi-Clock Dataflow for Hi-ClockFlow

In dataflow designs, each module, having relatively in-
dependent functionality, will consume data generated by its
predecessors and produce data for its successors. The inter-
connections between the modules are synchronizers (CDC
channels) to handle the interaction and transfer data. Compared
to those single-clock designs, the multi-clock designs have
general modules, running in different clock domains, but
special interconnection among them.

In most dataflow applications, usually the synchronizers
for the data transferring are FIFOs and Ping-Pong buffers.
FIFOs can store data in a sequential way without address so
they can be implemented with less resource but the data in
FIFOs have to be processed sequentially. In contrast, Ping-
Pong buffers can store data according to address but they have
to work in pairs, which take turns to be the output buffer
of the predecessor and the input buffer of the successors.
In order to handle different applications, which might not
have streaming memory access pattern, in Hi-ClockFlow, the
modules are generated with Ping-Pong interfaces via common

Module 0

Module 1

Module 0

Module 1

Module 0

Module 1

CLK0

CLK1

CLK0 CLK0

Ping-Pong Buffers Ping-Pong Buffers Ping-Pong Buffers

write
port

read
port

Single-Clock Design
for Application X

Single-Clock Design
for Application X

Multi-Clock Design
for Application X

Fig. 1. Example for the Mechanism of Multi-Clock Dataflow Based on Hi-
ClockFlow

0
0.2
0.4
0.6
0.8

1

4 9 14 19 24 29

Module Timing DSP FF LUT
Clock Period / ns

N
or

m
al

iz
ed

 R
at

io

Fig. 2. Example Based on 2mm for Relationship among Clock Frequency,
Module Timing and Resource Cost in HLS: The resultant values are normal-
ized and the definition of timing is runtime clock cycles times clock period.

HLS procedures under different timing constraints. Originally,
Ping-Pong buffers in commercial HLS tools like VivadoHLS
are connected to a shared clock. To meet the requirement of
multi-clock designs, in the design based on Hi-ClockFlow,
the clocks for the write ports of Ping-Pong buffers will be
connected to the one for their predecessor, while the clocks
for the read ports of Ping-Pong buffers will be connected to
the one for their successor.

As an example of Hi-ClockFlow hardware implementation
is shown in Fig. 1. The application can be synthesized under
single clock constraint, as shown on the left and right side in
the figures. Modules with Ping-Pong buffer interface in single-
clock circuits will be extracted and interconnected in a multi-
clock design, as shown in the middle, and some of the original
Ping-Pong buffers will be changed into dual-clock buffers.

Hi-ClockFlow targets on the DSE of the setting of clocks
and HLS directives for multi-clock dataflow, while the op-
timization of CDC mechanism will be included in Hi-
ClockFlow in the future.

B. Impact and Challenges of Multiple Clock Domains in HLS-
Based Dataflow

When changing clock frequency, many designers suffer
from tuning the parameters of HLS directives and one of
the reasons is that some combinations of HLS directives, e.g.
small initial interval for loop pipelining or large-scale array
partitioning, are not suitable for the specific clock period
and HLS tools cannot meet the timing constraints. As result,
raising clock frequency might not optimize the performance of
the design, e.g. initial interval for loop pipelining might need
to be increased. However, in [7], [8] and [9], this situation was
not considered which makes some of their resultant solutions
not applicable for higher frequency. However, both increasing
clock frequency and raising parallelisms with HLS directives
are common solutions to performance of applications.

To overcome this problem, we develop an open-source light
weight HLS evaluation framework, Light-HLS, presented in
Section IV, which provide APIs for Hi-ClockFlow to evaluate
the performance and resource of the input design and collect
various information. With the analysis of Light-HLS, we can
make sure that the combinations of HLS directives and clock
period generated by Hi-ClockFlow can be realized in HLS
tools. During the evaluation of the designs, Light-HLS will
inform Hi-ClockFlow whether the HLS directives can be
achieved under the specific timing constraint.

Module 0
(Bottleneck Module)

Input Output

Timing1Timing0

Module 1

Module 0
(Bottleneck Module) Module 1

Initial Interval

Data 2

Output
Data 1

Data 2

Input
Data 1

Runtime

Module 0
(Bottleneck Module)

Module 1
Output
Data 0

Input
Data 0

Fig. 3. Example based on 2mm: the initial interval (II) and throughput are
determined by the bottleneck module in dataflow, i.e. II=Timing0.

Apart from the compatibility between frequency and HLS
directives, the balance of performance and resource among
dataflow modules is also important. In HLS designs, the
clock frequency can significantly impact the performance and
resource cost, because under different timing constraints, the
HLS tools will try to find various approaches to improve the
performance of the design.

The scheduling of operations mainly depends on: (1) clock
frequency; (2) latency of the operation, as defined by the
target device; (3) user-specified HLS directives. As for binding
of resource, if the clock period is longer, more operations
could be completed within a single clock cycle and fewer
resource will be cost, but unnecessary low clock frequency
may undermine the performance. Conversely, if the clock
period is shorter, HLS tools might automatically schedule the
operations over more clock cycles, and some operations might
need to be implemented with more resources. In Fig. 2, we
take benchmark 2mm from PolyBench [13] as an example of
such trade-off, by fixing the other configurations while only
changing the clock period. Properly raising clock frequency
may improve the performance of the design but extremely
high clock frequency will result in high overhead of resource,
which might be not necessary.

As for the modules in a dataflow design, some of them
could be the bottlenecks of the throughput. As an example
based on benchmark 2mm in Fig. 3, there are two top-level
loops, extracted into two modules, Module 0 and Module 1.
The inner body of Module 0 contains more operations than
Module 1. Raising the clock frequencies and parallelism of
the bottleneck, e.g. Module 0, can help to optimize the overall
throughput. In contrast, the clock frequencies and parallelism
of the modules, e.g. Module 1, which do not restrain the
throughput, can be lowered to save resource.

The challenge for Hi-ClockFlow is to find the setting for
clock domains and HLS directives for each module in dataflow
to optimize throughput under the resource constraint. The
critical problem is that we allow each module to have flexible
clock domain and it will enlarge the design space. Supposing
that for each module, the number of the potential choices of
clock period is 10, the design space of Hi-ClockFlow is 10N

larger than the one of COMBA, where N is the number of
modules in dataflow. Therefore, Hi-ClockFlow needs to design
a high-efficiency DSE algorithm to handle the large design
space at the whole system view, which will be discussed in
Section V.

0
0.2
0.4
0.6
0.8

1

2mmCfg1 2mmCfg2 2mmCfg3 jcbCfg1 jcbCfg2 jcbCfg3
Application-ConfigurationN

or
m

al
iz

ed
 R

es
ul

t

FF_LiHLS
latency_LiHLS

FF_VivadoHLS
latency_VivadoHLS

LUT_LiHLS
DSP_LiHLS

LUT_VivadoHLS
DSP_VivadoHLS

Fig. 4. Light-HLS Validation: The results are normalized for comparison

IV. LIGHT-HLS: PORTABLE LIGHT WEIGHT HLS
FRAMEWORK

We develop Light-HLS to provide APIs for Hi-ClockFlow to
evaluate the performance and resource of the input design and
collect various information, with fast speed and high accuracy.

Light-HLS is a light weight HLS framework, which can be
called to perform general DSE for FPGA-based HLS design. It
covers the abilities of previous works, overcomes the existing
limitations and brings more practical features. Light-HLS is
modularized and portable so designers can use the components
of Light-HLS to conduct various DSE procedures. Light-HLS
gets rid of RTL code generation so it will not suffer from
the time-consuming synthesis of commercial HLS tools like
VivadoHLS, which involves many detailed operations in both
its frond-end and back-end.

A. Implementation

Light-HLS, based on LLVM-9.0, consists of front-end and
back-end. The front-end of Light-HLS accounts for IR gener-
ation and a series of IR optimizations while the back-end will
schedule the IR instructions and accomplish hardware resource
binding.

1) Light-HLS Frond-End: The goal of Light-HLS frond-
end is to generate IR code close enough to those generated
via commercial tools, like VivadoHLS, for DSE purpose.
In the front-end of Light-HLS, initial IR codes generated
via Clang will be processed by HLS optimization passes
consisted of three different levels: (a) At instruction level,
Light-HLS modifies, removes or reorders the instructions,
e.g. reducing bitwidth, removing redundant instruction and
reordering computation. (b) At loop/function level, functions
will be instantiated and loops may be extracted into sub-
functions. (c) As for memory access level, redundant load/store
instructions will be removed based on dependency analysis.

2) Light-HLS Back-End: The back-end of Light-HLS is
developed to schedule and bind for the optimized IR codes, so
it can predict the resultant performance and resource cost ac-
curately based on the given settings. The IR instructions can be
automatically characterized by Light-HLS and a corresponding
library, which records the timing and resource of different
types of operations, will be generated. For scheduling, based
on the generated library, Light-HLS maps most operations
to corresponding cycles based on as-soon-as-possible (ASAP)
strategy. For some pipelined loops, the constraints of the port
number of the BRAMs and loop-carried dependencies are
considered. Moreover, some operations might be scheduled

as late as possible (ALAP) to lower the II. As for binding,
Light-HLS accumulates the resource cost by each operation
and the chaining of operations is considered. The reusing of
hardware resource is an important feature in HLS and Light-
HLS reuses resources based on more detailed rules, e.g. the
source and type of input.

B. Validation

We validate Light-HLS against benchmarks from Poly-
Bench [13] by comparing its predictive performance and
resource with the evaluation results from commercial tools,
i.e. VivadoHLS.

We randomly generate design configurations, including
HLS directives and clock frequency, and run Light-HLS and
VivadoHLS for the benchmarks. Some of the comparison
results, based on benchmark 2mm and jacobi-2d, with different
memory access patterns and different data types, are shown in
Fig. 4. The relative error of performance evaluation of Light-
HLS is 3.1% averagely and limited within 8.3%. The relative
errors of resource evaluation of Light-HLS are limited within
2.7%, 17.9%, 10.1% and 0.0% for DSP, FF, LUT and BRAM
respectively. The relatively large error of FF estimation maybe
comes from that Light-HLS does not consider some limitations
in RTL generation. Since FFs are usually abundant on FPGA,
this relative error is acceptable.

V. ALGORITHM OF DESIGN SPACE EXPLORATION

A. Problem Formulation

In the design space, the application is described as dataflow,
which consists of multiple modules. Each module can has
its own setting of HLS directives, i.e. parallelism, and clock
frequency. Hi-ClockFlow will find the proper setting for each
module to maximize the overall throughput of the application
while meeting the resource constraint of the target FPGA de-
vice and the number constraint of clock domains. Noticeably,
as mentioned in Section III, the throughput is determined by
the slowest module in the dataflow, i.e. bottleneck module,
and therefore, the problem can be formulated as minimizing
a maximum, which is shown below:

minimize
fi,Li,Ai

max(Timing(Mi, fi, Li, Ai)), i = 1, . . . , N.

subject to
∑

Util(Mi, fi, Li, Ai) ≤ 1, i = 1, . . . , N.

A1 = A2 = . . . = AN , i = 1, . . . , N.

|{f1, ..., fN}| ≤ Ctot, i = 1, . . . , N.

where N is the number of modules in the dataflow, Ctot

is the limitation of the number of clock domains, for each
module, Mi is its IR code, fi is its clock frequency, Li is
the setting of loops in it, e.g. loop unrolling and loop pipelin-
ing, Ai is the setting of arrays in it, i.e. array partitioning,
Timing(M,f, L,A) is the function of module timing, i.e.
runtime cycle number times clock period, Util(M,f, L,A)
is the function of module resource utilization, which is a
linear combination of the utilization of different resources.
The definition of Ai = Aj is that if both Ai and Aj set

Algorithm 1 Pushing-Relaxation DSE
Require:

1. Application Source Code
2. Resource Constraint and Clock Constraint

Ensure:
1.Configbest : HLS directives and clocks for modules
2.IIbest : the lowest achieved II

Config← Reset()
while true do

pushSuccess← true
while pushSuccess do

Modpush ← BotteleneckModule(Modules,Config)
if IIbest > Timing(Modpush,Config) then

IIbest ← Timing(Modpush,Config)
Configbest ← Config

end if
Config, pushSuccess← Push(Modpush,Config)

end while
Modrelax ← BotteleneckModule(Modules,Config)
Clk← FindNextClock(Modrelax,Config)
if Clk is NULL then

break;
else

Config← Relax(Config,Modrelax,Clk)
end if

end while
return IIbest,Configbest

array partitioning for the same target array, the configuration
of array partitioning is the same. The purpose of this constraint
of array partitioning is to ensure the feasibility of parallel data
transferring for partitioned arrays between modules. In the
hardware implementation for the multi-clock designs based
on Hi-ClockFlow, the CDC data transferring is handled by
Ping-Pong buffers (BRAMs) so it will not be the performance
bottleneck of the dataflow and the throughput will be deter-
mined by the bottleneck module.

B. Pushing-Relaxation Heuristic Algorithm

First, Hi-ClockFlow will flatten the entire application into
modules based on their granularity. In current version of Hi-
ClockFlow, each module mainly consists of a top-level loop
and its peripheral regions. Secondly, the iterative optimization
of the bottleneck in the dataflow will start from an given initial
configuration, where all the modules share single slow clock
domain and there is no HLS directive set for the modules.

The iterative heuristic optimization consists of two parts:
pushing and relaxation, as shown in Algorithm 1.

Procedure of Pushing: The procedure of pushing is to
improve the performance of the bottleneck module by setting
proper HLS directives. When pushing a module, with a given
setting of clock domain for the module, Hi-ClockFlow will
find a configuration of HLS directives, for the bottleneck
module to make it change into a non-bottleneck module with
the lowest resource overhead. As shown in Algorithm 1, Hi-

clk1 + pragmas
(Bottleneck Module)

Input
Data

Output
Data

PushPush

Timing2Timing0 Timing1

clk0 +
pragmas

clk2 +
pragmas

Input
Data

Output
Data

R
el

ax

Timing5Timing3 Timing4

clk0 +
no pragma

clk2 +
no pragmasclk3 + no pragma

Fig. 5. Example of Pushing-Relaxation Heuristic Algorithm

ClockFlow will keep finding the current bottleneck module in
the dataflow to push it, improve its parallelism and reduce
its latency, until the constraint of resource is violated, i.e.
pushSuccess is false. The achieved minimum initial interval
of bottleneck module will be recorded during DSE.

There are three potential directions to improve the perfor-
mance of a module, unrolling a loop with a greater factor,
pipelining a loop with a smaller II and partitioning arrays
with a greater factor. For most of applications, when a loop is
unrolled, the arrays accessed in the loop will be partitioned
to allow more parallel accesses and make loop unrolling
affect. Therefore, with Light-HLS, Hi-ClockFlow can find
the arrays related to the specific loop and partitioning them
accordingly when the loop is unrolled. Hi-ClockFlow will
select the slowest last-level sub-loop in the slowest top-level
loop to optimize. If the target loop can be pipelined with a
smaller II, the smaller II will be set for the loop, otherwise,
the loop will be unrolled with a larger factor, until it is unrolled
completed, i.e. it is not a loop anymore. For example, in Fig. 5,
the directives, i.e. pragmas, of bottleneck module are pushed
to have high parallelism and reduce clock cycles.

Procedure of Relaxation: As shown in Algorithm 1, when
the pushing procedure cannot further improve the performance
under the given resource constraints, the setting of clock
domain for the current bottleneck module will be updated to
achieve possible further performance improvement. A set of
clock periods, size of which can be more than ten, is given.
Hi-ClockFlow will select the next higher frequency than the
current one for the bottleneck module. However, some original
HLS directives may not be applicable because of the change
of clock frequency and the configuration may be trapped
in a local optima. To resolve this issue, Hi-ClockFlow will
remove all the HLS directives for all the modules in dataflow
after clock frequency update and restart the procedure of
pushing. For example, in Fig. 5, during relaxation, the clock
of bottleneck module is changed from clk1 to clk3 and the
directives in the design are removed.

Since the throughput of dataflow is determined by the bottle-
neck module, during DSE, Hi-ClockFlow will continuously try
to resolve current bottleneck with the lowest resource overhead
and in this way Hi-ClockFlow can optimize the throughput.
Please note that the options for pushing and relaxation should
be under the constraints listed in Section V-A, otherwise they
will be disabled. For example, pushing will be stopped when
the constraint of resource is violated, and relaxation will
bypass an option of clock period to another one when the
number of the clock domains exceeds the give number.

VI. EVALUATION OF HI-CLOCKFLOW

Based on benchmarks from Polybench [13] and hand-
written simple CNN source code, we evaluate the DSE method
of dataflow. The reason why we implement the simple CNN
as benchmark is that actually many dataflow applications
can be regarded as a series of filters and CNN is a typical
example. The library of characterized IR instructions is col-
lected by Light-HLS for Xilinx Zynq-7020 and the designs
for the benchmarks are implemented on Zedboard. For each
benchmark, we set fixed resource constraints. To show the
benefit brought by multiple clock domains, we also conduct
DSE for single clock domain for different clock frequencies,
by reducing the clock set into one specific clock and only
exploring the configuration of HLS directives. The throughput
of dataflow can be represented by the initial interval (II) of
the design, which we collect in the experiments. The results
for the experiments are shown in Fig. 6 and the setting and
acceleration ratio of multiple clock domains are listed in
Table. I. The acceleration ratio of multiple clock domains is
calculated by dividing the shortest II achieved by single clock
design by the one achieved with multiple clocks.

According to experimental results for benchmark deriche,
2mm and CNN, we can notice that higher clock frequency does
not means better performance, which verifies the statement in
Section III and emphasizes the importance of the clock setting
in HLS designs.

As found in Fig. 6, compared with those single-clock de-
sign, based on pushing-relaxation DSE, multiple-clock designs
can achieve lower initial interval of dataflow, i.e. higher the
throughput. However, the extent of the benefit of multiple
clock domains will be effected by the application pattern,
especially whether the modules in dataflow are balanced. Such
balance between modules means they have similar combina-
tions of computations and memory accesses. For example,
benchmark 2mm is not balanced, because its modules have
different numbers of multiplications. A more significant ex-
ample of imbalanced modules is CNN, since each layer in

0
0.2
0.4
0.6
0.8

1

deriche 2mm jacobi-2d fdtd-2d CNN

20ns 15ns 10ns 5ns multiClk
BenchmarkN

or
m

al
iz

ed
 In

iti
al

 In
te

rv
al

Fig. 6. Comparison between Single-Clock Dataflow and Multi-Clock
Dataflow: Initial intervals for the application with different clock settings are
normalized to the maximum value.

TABLE I
SPEED-UP RATIO AND CLOCK DOMAINS FOR BENCHMARKS

benchmark deriche 2mm jacobi-2d fdtd-2d CNN
Clocks / ns 15/17.5/20 5/15 5 5/20 7/12.5/20
SpeedUp 1.07x 1.33x 1.00x 1.00x 1.81x

CNN may have various filter and strides. For these imbalanced
applications, multiple clock domains can help to balance
the resource and performance among modules and increase
the throughput. In contrast, if the application is originally
balanced, it cannot benefit from multiple clock domains. For
example, in benchmark jacobi-2d, the modules in dataflow are
almost the same and consequently, Hi-ClockFlow does not
make difference because it will end with single clock domain
for the design as shown in Table I. A special situation is
that for some applications, the dataflow based on multiple
clock domains may have the throughput similar to those of
single clock designs. For this situation, for some applications,
like fdtd-2d, some of their modules can have lower clock
frequencies, which could reduce the power consumption.

VII. CONCLUSION

In this paper, we present Hi-ClockFlow, an automatic HLS
framework, which can analyze the source code based on Light-
HLS, our light weight HLS evaluation framework, explore
the design space and optimize clock frequencies and HLS
directives in dataflow. Based on experiments, we analyze the
effect of clock in HLS design and demonstrate that multi-
clock design can improve the performance for dataflow with
imbalanced modules. Hi-ClockFlow, Light-HLS and men-
tioned test cases are open and available to the community on
https://eeweiz.home.ece.ust.hk/.

REFERENCES

[1] X. Jia and R. Vemuri, “The gapla: a globally asynchronous locally
synchronous fpga architecture,” in FCCM ’05, April 2005, pp. 291–292.

[2] A. Royal and P. Y. Cheung, “Globally asynchronous locally synchronous
fpga architectures,” in FPL ’03. Springer, 2003, pp. 355–364.

[3] O. Ragheb and J. H. Anderson, “High-level synthesis of fpga circuits
with multiple clock domains,” in FCCM ’18, April 2018, pp. 109–116.

[4] M. J. Mamaghani, J. Garside, and D. Edwards, “De-elastisation: From
asynchronous dataflows to synchronous circuits,” in DATE ’15, March
2015, pp. 273–276.

[5] M. J. Mamaghani, D. Sokolov, and J. Garside, “Asynchronous dataflow
de-elastisation for efficient heterogeneous synthesis,” in ACSD ’16, June
2016, pp. 104–113.

[6] M. J. Mamaghani, M. Krstic, and J. Garside, “Automatic clock: A
promising approach toward galsification,” in ASYNC ’16, May 2016,
pp. 83–84.

[7] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Performance
modeling and directives optimization for high level synthesis on fpga,”
IEEE TCAD, pp. 1–1, 2019.

[8] J. Cong, P. Wei, C. H. Yu, and P. Zhang, “Automated accelerator
generation and optimization with composable, parallel and pipeline
architecture,” in DAC ’18, June 2018, pp. 1–6.

[9] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” in ACM SIGARCH Computer
Architecture News, vol. 42, no. 3. IEEE Press, 2014, pp. 97–108.

[10] P. Li, L.-N. Pouchet, and J. Cong, “Throughput optimization for high-
level synthesis using resource constraints,” in IMPACT14, 2014.

[11] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong, “Resource-aware throughput
optimization for high-level synthesis,” in FPGA ’15. New York, NY,
USA: ACM, 2015, pp. 200–209.

[12] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for
generating high throughput cnn implementations on fpgas,” in FPGA
’18. New York, NY, USA: ACM, 2018, pp. 117–126.

[13] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:
http://www. cs. ucla. edu/pouchet/software/polybench, 2012.

https://eeweiz.home.ece.ust.hk/

