
COMBA: A Comprehensive Model-Based Analysis
Framework for High Level Synthesis of Real

Applications
Jieru Zhao∗, Liang Feng∗, Sharad Sinha†, Wei Zhang∗, Yun Liang§ and Bingsheng He‡

∗ECE Department, Hong Kong University of Science and Technology; †SCSE, Nanyang Technological University
§School of EECS, Peking University; ‡Department of CS, National University of Singapore

{jzhaoao,lfengad}@connect.ust.hk, sharad sinha@ieee.org, wei.zhang@ust.hk,
ericlyun@pku.edu.cn, hebs@comp.nus.edu.sg

Abstract—High Level Synthesis (HLS) relies on the use of
synthesis pragmas to generate digital designs meeting a set of
specifications. However, the selection of a set of pragmas depends
largely on designer experience and knowledge of the target
architecture and digital design. Existing automated methods of
pragma selection are very limited in scope and capability to
analyze complex design descriptions in high-level languages to
be synthesized using HLS. In this paper, we propose COMBA,
a comprehensive model-based analysis framework capable of
analyzing the effects of a multitude of pragmas related to func-
tions, loops and arrays in the design description using pluggable
analytical models, a recursive data collector (RDC) and a metric-
guided design space exploration algorithm (MGDSE). When
compared with HLS tools like Vivado HLS, COMBA reports an
average error of around 1% in estimating performance, while
taking only a few seconds for analysis of Polybench benchmark
applications and a few minutes for real-life applications like
JPEG, Seidel and Rician. The synthesis pragmas recommended
by COMBA result in an average 100x speed-up in performance
for the analyzed applications, which establishes COMBA as a
superior alternative to current state-of-the-art approaches.

I. INTRODUCTION

FPGAs are attracting increasing attention to accelerate a
wide variety of applications, such as data center [10] and deep
learning [18]. Due to their reconfigurability and energy effi-
ciency, FPGAs can speed up system performance significantly
with low energy consumption. However, implementation on
FPGAs requires deep comprehension of the hardware archi-
tecture and great effort to write register transfer level (RTL)
codes, which is error prone and time consuming.

To improve programmability on FPGAs, the High Level
Synthesis (HLS) methodology, which automatically transforms
the behavioral description specified in high-level languages
(e.g., C, C++, SystemC) to RTL-level design, has been devel-
oped. Due to its potential to accelerate application develop-
ment, several FPGA vendors, such as Xilinx and Altera, have
released HLS tools. However, the efficiency and quality of
the resulting RTL designs largely depend on the configuration
of the optimization pragmas provided by HLS tools [17].
Significant speed-up can be achieved with properly chosen
pragmas, while improper selection can worsen design perfor-
mance and resource utilization. Therefore, an optimal config-
uration of pragmas which maximizes the performance under
limited resources is highly beneficial. However, finding such
a configuration is non-trivial given the multiple optimization
pragmas and exponentially increasing design space.

Several prior works have been presented to analyze the
performance of applications under pragmas and explore the
design space to find a high-performance configuration. In
[14, 15], an analytical model is proposed, but it focuses on
OpenCL programs, which is different from direct synthesis of
C/C++ applications. C-based works [8, 19, 20] propose perfor-
mance models under limited optimization pragmas, which is
not sufficient for real applications. With coupled functions and
loops, as well as multi-dimension arrays in real applications,
only optimizing one loop and partitioning one array [20]
is insufficient to maximize performance. Also, more factors
should be considered to improve the prediction accuracy.

To this end, we propose COMBA, a comprehensive model-
based analysis framework, including a pluggable analyti-
cal model, a recursive data collector (RDC) and a metric-
guided design space exploration (MGDSE) algorithm. The
proposed model considers seven optimization pragmas, loop
unrolling, loop pipelining, array partitioning, function pipelin-
ing, dataflow, loop flattening and function inlining, covering
more pragmas than previous works. It also estimates the
performance of C/C++ applications more accurately by con-
sidering diverse code structures as well as memory access
conflict in real applications. The RDC computes the required
parameters for the model, which can support a rich set of
code structures in C/C++ and achieve cycle-level accuracy
by considering operation chaining. With more complex code
structures and more optimization pragmas, the design space
increases exponentially and the brute-force method in previous
papers [14, 20] cannot work. Therefore, we propose a two-
stage MGDSE algorithm and three evaluation metrics to prune
(first stage) and explore (second stage) the design space.

Our framework can model the performance closely com-
pared to Vivado HLS and find a high-performance pragma
configuration with an average 100x speed-up within minutes
in an exponentially increasing design space. Users can directly
utilize the configuration in an HLS tool like Vivado HLS to
obtain the corresponding hardware implementation.

II. RELATED WORKS

Existing performance estimation and DSE-related methods
have been proposed in [7, 8, 12, 14, 15, 19, 20]. In [14, 15],
OpenCL-based performance models are proposed, but not C-
based models. Due to the highly parallel OpenCL execution

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 430

TABLE I
CONFIGURATION OF PRAGMAS

Pragma Configuration
Loop unrolling Unrolling factors
Loop pipelining Enabled/Disabled

Array partitioning Block/Cyclic/Complete
Function pipelining Enabled/Disabled

Dataflow Enabled/Disabled
Loop flattening Yes/No

Function inlining* Yes/No

model, their models focus on pipelining and parallelism anal-
ysis, making them incapable of modeling the performance of
applications specified in sequential languages. Shao et al., in
[12], propose a pre-RTL power-performance model for ASICs,
not FPGA-based accelerators. Their resource model is not
applicable to the resources on FPGAs (DSPs, BRAMs).

Of C-based works targeting FPGAs, [19, 20] propose
analytical performance models but only focus on limited
optimization pragmas without considering function related
optimization. Specifically, [19] synthesizes a number of design
points by invoking HLS tool, and then models them in a linear
model based on loop hierarchy related observations, which is
only used for nested loops and small benchmarks. [20] restricts
itself to loop unrolling, loop pipelining and array partitioning
only, considers simple loop hierarchies and optimizes only one
nested loop. The loop unrolling model in [20] estimates the
loop latency based on the inner loop, ignoring the logic outside
the inner loop but within the outer loop. Its loop pipelining
model doesn’t consider the effects of memory conflict, and
the array partitioning model only focuses on one-dimension
arrays. Furthermore, [20] utilizes the brute-force method to
explore the design space with only a few dozen points. [7]
proposes a learning-based model to explore the design space,
requiring more time than analytical models. In [8] the design
space is pruned by exploiting loop-array dependencies, but the
invoking of HLS tools increases the DSE time to many hours.

In order to cover more complex designs and target real
applications, COMBA supports seven optimization pragmas,
as shown in Table I. Function inlining is an optional pragma
supported in COMBA. Users can decide whether to inline
functions or not according to their own needs.

III. MOTIVATION AND OVERVIEW

A. Motivation
Real applications contain complex code structures with

coupled functions and loops, and multi-dimension arrays. Fig-
ure 1 shows the “decode block” kernel in JPEG application
[3], which contains five sub-functions, seven loops and three
arrays. For different configurations, the performance improve-
ment, represented by latency and throughput, varies, as shown
in Fig.2. We compare loop pipelining (LP), loop unrolling
(LU) and function pipelining (FP), combined with array parti-
tioning for corresponding arrays. Both LU and FP improve the
performance significantly if a beneficial array configuration is
chosen, while LP plays a minor role. Specifically, FP further
improves throughput compared with LU. Therefore, function-
related pragmas, like FP, which are not considered by previous
works, are of great importance in real applications. Loop-

Fig. 1. Motivation example

Fig. 2. Performance improvement

related pragmas, such as LP and LU, have different effects
on the performance, depending on the specific loop structures.
Only considering one nested loop, as in [20], doesn’t apply to
other loop structures and can’t reveal the relationship among
loops. Moreover, the configuration of arrays influences the
performance a lot. To this end, a comprehensive analytical
model is required to consider all the pragmas above, as well
as the interactions among them, for complex applications.

Considering more pragmas identifies the characteristics
of applications and further improves the performance, but
this leads to a large design space. In the same example, the
functions may or may not be pipelined and the dataflow may
or may not be applied to the top function, resulting in 26 ∗ 2
choices in total. Similarly, configurations of loops and arrays
contain 27 ∗ (42 ∗ 75) and 123 choices, respectively. Therefore
the design space contains 2∗26∗123∗27∗42∗75 points, which
is so large that invoking HLS tools to test each configuration
is infeasible and the speed of DSE needs to be faster.

B. Framework Overview
The overall framework is shown in Fig.3. The input is a

C/C++ application, and the output is the optimal configuration
(i.e., the setting of pragmas) with high performance under
given resource constraints. First, the C/C++ specification is
translated into LLVM IR via the Clang front end. Next, the
LLVM IR is sent to the RDC to compute the parameters
required by our analytical model according to the pragma
setting and profiling library. The profiling library has infor-
mation about operators for different design frequencies. With
the parameters from the RDC, the proposed model estimates
the performance and resource usage for the corresponding
configuration. Finally, the MGDSE evaluates the results and
sets the next configuration, and then COMBA iterates from the
RDC stage until it finds the high-performance configuration.
Note that the performance and resource models are pluggable
and hence can accommodate a vast range of target FPGA
architectures, though we use Virtex-7 in this paper.

IV. RECURSIVE DATA COLLECTION

With the LLVM IR generated by the Clang front end, the
RDC builds the data flow graph (DFG) and computes the
data statistics required by our model. The LLVM IR is the

431

Fig. 3. Framework overview

(b) Control flow graph (c) Data flow graph

%i

%a %a2

%0 %1

%m

%a4

store

%i.n

%ec

ret

br

br

for.end:
ret void

for.body:
%i = phi i64 [0], [%i.n]
%a = getelementptr i32* %A, %i
%0 = load i32* %a
%a2 = getelementptr i32* %B, %i
%1 = load i32* %a2
%m = mul i32 %1, %0
%a4 = getelementptr i32* %C, %i
store i32 %m, i32* %a4
%i.n = add i64 %i, 1
%ec = icmp eq i64 %i.n, 16
br%ec, %for.end, label %for.body

entry:
br label %for.body

void f(int *A,*B,*C)
{

int i;
for(i=0,i<16,i++)

C[i]=A[i]*B[i];
}

(a) Source code
Fig. 4. Control flow graph and data flow graph

LLVM intermediate representation, which is a Static Single
Assignment (SSA) based representation and allows efficient
analysis through LLVM passes. It is represented as a Control
and Data Flow Graph (CDFG), with separate control flow
and data flow graphs combined to represent an application,
as shown in Fig.4. There are three basic blocks with multiple
assembly level instructions in the CFG shown in Fig.4(b), for
which the relationship between instructions is specified in the
DFG, as shown in Fig.4(c). The generated DFG covers a rich
set of code structures like nested loops, function calls and if-
else and switch branches.

The RDC is implemented as an LLVM pass based on
llvm::Module class, and analyzes the LLVM IR to compute
the required parameters. The parameters are divided into two
categories: the static information, e.g., the loop bound of each
level loop or the memory address of each array element,
and the dynamic information, e.g., the iteration latency of
loops. Static information is obtained by analyzing the assem-
bly instructions from the LLVM IR directly, while dynamic
information depends on the code structure and optimization
pragmas applied, and is computed using the DFG.

1) DFG Construction: The DFG is constructed by con-
necting dependent instructions and storing each instruction
as a node, with its latency as the node weight. A dynamic
programming (DP) approach [4, 15] is then employed to trace
each path between two dependent instructions and calculate
the latency between them. The latency in the critical path
can then be computed based on these latencies. The DFG
construction phase also takes into account loop and function
hierarchies in the design description and accordingly computes
their latencies by adhering to data and control flow dependen-
cies. Sub-functions and loops within the function hierarchy are
defined as “sub-elements” and viewed as nodes in the DFG
of the top function, as shown in Fig.6.

Fig. 5. Example of load/store latency

Fig. 6. Function DFG Fig. 7. Operation chaining

2) Node Weight Setting: We obtain the latency of each
instruction by testing microbenchmarks and provide a profiling
library for five commonly used frequencies, namely, 100MHz,
125MHz, 150MHz, 200MHz and 250MHz. Specially, the
latency of load/store instructions depends on two factors. First,
it depends on whether the memory ports are available. If
available, the load latency is two cycles (generating an address
in one cycle then reading the data in the next) and the store
latency is one cycle. If not, the delay caused by other load/store
instructions should be added to get the actual latency. Second,
it depends on pragmas. In the example in Fig.5, if both loops
are unrolled completely, the second loop can access the result
of the first loop directly and doesn’t need to load b[i] again.
Therefore, the latency of load b[i] is set to zero.

3) Operation Chaining: To improve the estimation accu-
racy, “operation chaining” is considered, which means that
more than one operation can be scheduled in one cycle if
possible, as shown in Fig.7. Profiling-based information is
used to decide on the usage of operation chaining under the
five design frequencies considered, and this is used to modify
the weight of each node when constructing the DFG.

V. MODELS IN COMBA
A. Performance Model

In this section, we present the details of the performance
model according to five frequently-used optimization pragmas,
namely, loop unrolling, loop pipelining, array partitioning,
function pipelining and dataflow.

1) Loop Unrolling: Loop unrolling (LU) allows iterations
of one loop to execute in parallel. To show the general case,
we define a nested loop L = {L1, . . . , Li, . . . , Ln}, where n
is the number of loop levels in L and L1, Li and Ln are the
outermost loop, sub-loop in level i and the innermost loop,
respectively. Let B = {B1, . . . , Bi, . . . , Bn} denote the set of
loop bounds and U = {U1, . . . , Ui, . . . , Un} denote the set
of loop unrolling factors correspondingly. The loop latency is
estimated in a recursive way using Eq.1:

CUk

Lk
= C

Uk+1

Lk+1
· Bk+1

Uk+1
· Uk + CUk

Lk\Lk+1
, (1)

where Lk is the loop in level k; Lk+1 in level k+1 is the inner
loop of Lk; CUk

Lk
and C

Uk+1

Lk+1
are the iteration latencies of Lk

432

Fig. 8. Three kinds of loops

and Lk+1 with unrolling factors Uk and Uk+1, respectively;
Bk+1

Uk+1
is the trip count after LU is applied; and Uk is a

multiplication factor since loops are scheduled in sequence
in Vivado HLS, even if they are independent [17]. When Lk

is unrolled with Uk, its sub-loop Lk+1 will be replicated,
generating Uk copies to execute in sequence. CUk

Lk\Lk+1
is the

critical path latency of the logic specified between the loop
statements, that is, the codes within Lk and outside Lk+1,
and is returned by the RDC.

The initial state of the recursion, called as “recursion basis”,
is the iteration latency (CUr

Lr
) of Lr, which is not unrolled com-

pletely with inner loops {Lr+1, . . . , Ln} unrolled completely.
CUr

Lr
and the loop bounds are returned by the RDC, and the

unrolling factors come from the pragma setting. Eq.1 works
for all loop hierarchies, including perfect (only innermost loop
has contents) and non-perfect (with logic specification between
loop levels) nested loops, and multiple loops (more than one
loop in the same loop level), as shown in Fig.8. For multiple
loops, CUk+1

Lk+1
· Bk+1

Uk+1
becomes

∑m
j=0 C

Uk+1,j

Lk+1,j
· Bk+1,j

Uk+1,j
to add

the latency of loops in the same level k + 1.
The latency of the loop in level k can then be computed

according to Eq.2. CycleLk
is the latency of Lk:

CycleLk
= CUk

Lk
· Bk

Uk
. (2)

2) Loop Pipelining: Parts of the operations from differ-
ent iterations can overlap to achieve parallelism using loop
pipelining. The three factors of the pipelined model are
pipeline depth, initiation interval and trip count [6]. The trip
count depends on whether the loop is perfect or not. In a
perfect nested loop, when the inner loop is pipelined, outer
loops without unrolling can be flattened to feed the inner loop
with new data and form a deeper pipeline to improve the
overall throughput. The trip count is the multiplication of each
loop’s trip count, as shown in Eq.3. For non-perfect loops, the
trip count is equal to Bi

Ui
(the trip count of Li), as shown in

Eq.4. i is the level of the loop that is pipelined.

CycleLk
= Di + IIi ·

(
Bi

Ui
·Bi−1Bi−2 · · ·Bk − 1

)
, (3)

where CycleLk
is the latency of Lk, Di is the pipeline depth of

loop Li and IIi is the initiation interval. Except Li, outer loops
are not unrolled and can be flattened; otherwise the pipeline
is maintained up to the loop level which is unrolled.

CycleLi
= Di + IIi ·

(
Bi

Ui
− 1

)
, (4)

where CycleLi
is the latency of Li in an imperfect loop.

Next we’ll demonstrate the estimation of IIi and Di. IIi is
the latency between the initiation of two consecutive iterations.

AddLoad

Load Add

AddLoad

Store Store… …

… …

…

Store

… Store

𝐶"#
$#	 = 5

II = 2

𝐷'	 = 6

stall

stall

Fig. 9. Pipeline depth

Minimal IIi is constrained by available resources and the loop-
carried dependence [5, 16], shown as Eq.5. IIres

i,min and IIrec
i,min

are resource-constrained and recurrence-constrained minimum
initiation intervals of Li, respectively. Moreover, sub-functions
within Li are also pipelined, affecting IIi, shown as Eq.6.

IIi,min = max
(
IIres
i,min, IIrec

i,min

)
(5)

IIi = max (IIi,min, IIsub,max) , (6)

where IIsub,max is the maximum initiation interval among all
the sub-functions within Li, i.e.,max

sub
(IIsub). When estimating

IIres
i,min, we assume operators are sufficient [2] and IIres

i,min is
constrained by memory operations and bandwidth. Vivado
HLS maps arrays to single-port/dual-port RAMs, depending
on the actual needs. However, the limited ports still constrains
IIres
i,min in a load/store intensive algorithm, shown as Eq.7:

IIres
i,min = max

m

(⌈
Accessm
Portsm

⌉)
, (7)

where Portsm is the number of ports and Accessm is the
number of accesses to array m, adding both read and write
operations together considering load/store conflict. If array m
is partitioned, Portsm and Accessm become the number of
ports and accesses to corresponding partitions, respectively.

IIrec
i,min is computed as Eq.8 [11]:

IIrec
i,min = max

p

(⌈
Delayp

Distancep

⌉)
, (8)

where Delayp is the latency between a pair (p) of dependent
instructions from different iterations and Distancep is the
subtraction of the corresponding iteration numbers.

Di is related to CUi

Li
. If load and store operations access

different arrays, Di equals CUi

Li
; otherwise Di is computed

as Di = dCUi

Li
/IIie · IIi, considering load/store conflict. For

example, in Fig.9, an array element is loaded in the first cycle
and stored in the same array in the fifth cycle after three logic
operations in one iteration, and CUi

Li
is five cycles. When Li is

pipelined with II = 2, store in the first iteration will conflict
with load in the third iteration, as shown in the red boxes.
Then store will be scheduled in the sixth cycle, generating a
“stall” in each iteration. Therefore, the pipeline depth Di is
six cycles, which can be calculated as d 52e · 2 = 6.

3) Array Partitioning: Memory operations are often the
performance bottleneck in real applications. To increase local
memory bandwidth, Vivado HLS allows arrays to be parti-
tioned into smaller ones in different dimensions, providing
three options: block, cyclic and complete [16]. COMBA sup-
ports multi-dimension array partitioning with the same options
as Vivado HLS. By tracking each load/store node in the data
flow and finding the address index of the accessed element,
RDC calculates which partition P it is located in using Eq.9,

433

(a) Function pipelining

(b) Dataflow
Fig. 10. Difference between function pipelining and dataflow

and then checks whether this partition’s ports are available to
compute the load/store latency. The partition number in one
dimension is calculated in Eq.9a(block) and Eq.9b(cyclic). For
complete option, it is calculated by setting fi = sizei in both
equations. We extend it to multiple dimensions in Eq.9c.

Pi =
⌊
indexi/dsizei/fie

⌋
(9a)

Pi = (indexi) mod (fi) (9b)

P = P1 +
n∑

i=2

(Pi ·
i−1∏
k=1

fk), (9c)

where in dimension i, Pi is the partition number, indexi is
the address index of the array element, sizei is the number
of elements and fi is the array partitioning factor. P is the
partition number considering n-dimension array partitioning.

4) Function Pipelining: Real applications often contain
multiple functions. As such, function pipelining is critical to
improve the performance by allowing concurrent execution of
operations within a function. Vivado HLS unrolls all sub-
loops completely and pipelines each sub-function inside a
pipelined function. Based on this feature, throughput is utilized
to evaluate the benefit of this pragma. It measures the amount
of function outputs per cycle and is calculated as 1

II . II is the
initiation interval of a pipelined function as follows:

II = max
(
IIres

min, IIsub
max

)
, (10)

where IIres
min is the resource-constrained minimum II, and IIsub

max
is the maximum function II among all sub-functions.

IIsub
max is computed by comparing each sub-function’s II and

choosing the maximal one. IIres
min is estimated by counting the

number of memory operations in the function, including sub-
functions and logic surrounding sub-functions, then dividing
by the number of memory ports. In the example in Fig.10(a),
there are two sub-functions, a and c, and one sub-loop, b,
within the top-function. Loop b is unrolled completely and
becomes logic between a and c. A, B and C are arrays and
the numbers of their memory operations are counted. If the
counted number for array A is the largest, including reads,
writes in sub-function a and reads in logic b, it will be then
divided by the number of ports to compute IIres

min.
5) Dataflow: Dataflow is a “coarse grain” pipelining (task-

level) between sub-functions and sub-loops. Unlike function
pipelining, it doesn’t require sub-functions to be pipelined
and sub-loops to be unrolled, but this technique can only be
applied to functions or loops at the top level. Also, it aims at
applications with “data flow” characteristics, i.e., the output
of one function/loop is the input of the next function/loop and
the whole application works in a flow, like the example in

Figure 10(b). Many real applications can benefit from this
pragma, such as applications in the image processing and
data transmission domains. We also use II to evaluate the
throughput, shown as follows:

II = IIsub
max = max

i

(
IIsub
i

)
, (11)

where II equals the maximal initiation interval between its
sub-elements. If sub-element i is not pipelined, the initiation
interval IIsub

i is equal to the latency of sub-element i.

B. Resource Model
Resource modeling focuses mainly on the usage of DSP and

block-RAM(BRAM), which are the performance bottlenecks
in most designs [14, 20].

1) DSP Estimation: We obtain the resource usage of dif-
ferent operators by testing microbenchmarks (e.g., a 32-bit
floating point multiplication is mapped to a floating point
unit with three DSPs). Then we consider resource sharing
according to the kinds of operators. For LUT-based and small
bandwidth operations, resource sharing incurs large resource
usage due to the multiplexers introduced [13]. Therefore they
are not shared, and the number of operations equals the
number of instances. Conversely, DSP-based operators are
sharable with higher efficiency and larger area, and the number
of operations is the maximum number of operators executing
in parallel. Specifically, for sharable operators, if a loop is
pipelined, we compute the lower bound (i.e., the number of
instances that must be allocated) to estimate the resource usage
according to N op

min = dNop

II e [2], where Nop is the number
of operation op used in one iteration, and II is the initiation
interval of the loop. For example, II is 2 and four floating
point adders are used in one iteration. Therefore, at least two
floating point adders are needed for this loop.

2) BRAM Estimation: Local reads/writes consume memory
resources on FPGAs, and arrays are synthesized into BRAMs,
which are provided in blocks, with each block containing 18K-
bit or 36K-bit primitive elements for data storage on most
modern Xilinx FPGAs. Each array is synthesized into its own
BRAM which contains one or multiple blocks. We model the
BRAM usage Rbram for each array in Eq.12 and add them
together as the total memory usage:

Rbram =
⌈ #bits

width

⌉
·
⌈#element

depth

⌉
· #partition · d, (12)

where Rbram is the number of blocks, #bits is the width of
each array element (e.g., the int data type is 32 bits wide),
#element is the number of elements per memory partition
(i.e., d array size

#partition e), and width and depth are the bandwidth
and depth of the selected block configuration, respectively.⌈ #bits

width

⌉
·
⌈ #element

depth

⌉
computes the usage of blocks for one mem-

ory partition. The selection of the block configuration depends
on data types, BRAM modes and devices. For example, for
Virtex-7 FPGAs, given an array containing 512 32-bit wide
elements (512 × 32), the selected configuration of an 18Kb
block RAM is 512 × 36 for single-port and simple dual-port
modes (one block is sufficient), and is 1k × 18 for the true
dual-port mode since the maximum width in this mode is 18
(two blocks are needed to cover the width of 32). #partition

434

is the number of memory partitions, equal to the product of
the partitioning factors in each dimension, i.e.,

∏n
i=1 fi, and d

reflects the effect of dataflow, which places channels between
sub-elements to maintain the data rate. For scalars, the channel
is a register. For arrays, the channels are ping-pong buffers by
default, which means that each BRAM has two copies: one is
used for the output buffer of the last function/loop and one is
used for the input buffer of the next function/loop. So d is 2
if dataflow is applied, and is 1 if it is not applied.

VI. METRIC-GUIDED DESIGN SPACE EXPLORATION

In this section, we present the MGDSE algorithm, which is
designed to explore a large design space efficiently. Specif-
ically, the algorithm begins with the default setting (without
pragmas) and conducts a two-step exploration, namely, redun-
dancy elimination and guided search.

1) Redundancy Elimination: The first stage is to remove
the redundant design points. For example, in Vivado HLS,
when a function or loop is pipelined, the sub-loops are
unrolled completely and cannot be pipelined. Therefore, no
matter what unrolling factor is set and whether sub-loops are
pipelined, the performance remains the same. Another example
is of perfectly nested loops. When the inner loop is not
unrolled completely, unrolling the outer loop cannot improve
the performance because Vivado HLS generates copies of the
inner loop and schedules them in sequence. After removing
these redundant points, which are not promising to improve
performance, the design space is reduced significantly without
sacrificing the quality of the search space.

2) Guided Search: The second stage is to evaluate the
performance of the current design point and determine the next
design point to be evaluated through three evaluation metrics,
namely, Mdiff, Mres and Mapt, which identify the performance
bottlenecks and indicate a suitable direction to explore.
Mdiff is the difference in latency between the longest sub-

element (Csub
max) and the second-longest sub-element (Csub

s,max) in
the target function, as shown in Eq.13:

Mdiff = Csub
max − Csub

s,max. (13)
According to Mdiff, MGDSE gives the top optimization priority
to the longest sub-element, which is assumed to have the
greatest influence.
Mres is computed to check whether the DSP and BRAM

usage exceed the available resources on FPGAs, as shown in
Eq.14:

Mres = max
(

DSPused

DSPtotal
,

BRAMused

BRAMtotal

)
, (14)

where each fraction denotes the percentage of the total re-
sources used. If the resource constraints are not satisfied, the
corresponding point is removed from the design space.
Mapt evaluates which array partitioning type (block or

cyclic) is beneficial in dimension i, as shown in Eq.15:

Mapt,l =
#loads

max
j,k

(indexji − indexki + 1)
(15a)

Mapt,s =
#stores

max
j,k

(indexji − indexki + 1)
, (15b)

where Mapt,l and Mapt,s represent the value of Mapt for loads
and stores, respectively, and indexji and indexki are the indexes
in dimension i of array elements j and k. When only one
element is accessed, the denominator is zero so we add 1 here.
If Mapt is smaller than 1, the array elements are accessed at
intervals and block will be more beneficial. If Mapt is equal
to 1, the elements are accessed continuously and cyclic type
will be better. For instance, if a loop accesses A[0] and A[1]
in one iteration, Mapt = 1. Then MGDSE tends to set the type
as cyclic for array A, leading to two simultaneous loads.

As a whole, the MGDSE algorithm works as follows. First,
the top function can be applied with dataflow or function
pipelining. If a function is pipelined, dataflow will be ignored.
Therefore, there are three choices for the top function: the
first is applying dataflow (case 1); the second is applying
function pipelining (case 2); and the last is applying neither
of them (case 0). In case 0, MGDSE selects the longest sub-
element to optimize each time, aiming at minimizing Mdiff

until zero. Then MGDSE attempts to optimize the new longest
sub-element in the list. If Mdiff is still larger than zero after
optimization, the optimized sub-element will be removed out
of the optimization list. Through this iterative way, the latency
of all sub-elements will be minimized while honoring the
resource constraints. In case 1, MGDSE first checks whether
the function satisfies the “producer-consumer” requirement. If
satisfied, the exploration will be conducted the same as case
0; otherwise it will be skipped. In case 2, the top function
is pipelined and the configuration of sub-functions (pipelined)
and loops (unrolled completely) is fixed. Then MGDSE varies
the array partitioning setting based on Mapt and computes Mres

to remove the points which exceed the resource constraints.
For cases 0 and 1, when optimizing the sub-elements,

the “function-type” sub-elements are viewed as new target
functions and sent to MGDSE recursively. For “loop-type”
sub-elements, MGDSE starts from the innermost loop and
then the outer loops in each level. Each level’s loop can be
applied with loop pipelining and loop unrolling with various
factors. MGDSE then computes Mres and Mapt for each loop
configuration to choose the next point to test.

Based on the evaluation metrics, MGDSE ignores the points
which make performance worse and chooses a promising con-
figuration as the next point, exploring the design space rapidly
and finding a high-performance configuration in minutes.

VII. EXPERIMENTS AND RESULTS

We evaluate COMBA on several benchmarks, Polybench
[9], CHStone [3] and the image processing applications used
in [1, 19], and compare them with the current state-of-the-
art [20]. COMBA is developed on LLVM 3.4 with Clang as
the front end, running on CentOS Linux 7.3 with an Intel
Core i7-4790 CPU. The target FPGA platform is Virtex-7
XC7V2000T-FLG1925. Xilinx Vivado HLS 2016.1 is used to
evaluate the accuracy of our model.

A. Estimation Accuracy
Figure 11 plots the performance of different configurations

estimated by COMBA compared with those tested by Vivado

435

(a) BICG (b) JPEG
Fig. 11. Estimation performance comparison between COMBA and Vivado
HLS

HLS at 100 MHz. We choose BICG from Polybench and
JPEG from CHStone as examples to show the estimation
accuracy for various benchmark suites. The x-axis is the
different configurations, and we select representative ones
from the original design space to evaluate the accuracy. The
representative configurations are those that are promising to
improve the performance and useful to guide the design space
exploration. The y-axis denotes the latency of the benchmarks
with various configurations. The curves in Fig.11 indicate that
COMBA models the performance of different configurations
precisely compared with the results from Vivado HLS. The
average estimation errors of Polybench applications are shown
in Table III, compared with [20]. The estimation errors of
JPEG and other applications we tested are shown in column 2
in Table V. We can see that our comprehensive model not
only improves the estimation accuracy further (around 1%
difference) for Polybench, but also estimates the performance
of more complicated benchmarks accurately. Note that the
estimation error could be larger when array partitioning is
applied because of the false dependency analysis of Vivado
HLS, which is similar to [20]. Despite this, the tool can still
estimate the performance trends and find a high-performance
configuration successfully.

B. DSE Results and Comparison
Table II compares COMBA with the framework proposed in

[20] for the Polybench benchmark suite. COMBA explores the
design space, which is much larger than that in the previous
work, as shown in columns 4 and 5. The reason is that we
consider more characteristics of the target function, such as
different kinds of loop structures, multi-dimension arrays and
coupled functions/loops. [20] estimates the iteration latency
of the inner-loop, which is not unrolled completely and then
computes the total latency of a nested loop with its model,
without considering other loop structures, like multiple loops
(Fig.8). Array partitioning is also applied to one of the arrays
in one dimension. Therefore the design space is small, leading
to limited optimization results. In contrast, when we consider
all the loops within the function, all the dimensions for each
array and function-related optimization pragmas, the design
space increases exponentially. For example, if each array has
10 configurations in one dimension and the target function
contains three two-dimension arrays, the design space for
the arrays will be 106, considering the combination of the
configurations in six dimensions, which is exponentially more

TABLE II
COMPARISON AND EXPERIMENT RESULTS OF POLYBENCH

Benchmark
Design Space Performance

Speed-up
MGDSE
Time (s)

[20] Ours [20] Ours [20] Ours

ATAX 85 1.31e+8 8.35 125.45 8.85 41.01

BICG 95 5.76e+8 15.88 201.38 22.60 89.20

GEMM 85 1.05e+10 8.15 261.63 185.37 65.83

GESUMMV 85 8.39e+8 15.42 83.88 12.05 77.40

MM 85 6.34e+13 15.22 277.03 161.37 292.15

MVT 95 1.05e+10 15.30 189.18 14.88 57.72

SYR2K 85 1.05e+10 7.27 123.96 250.01 223.00

SYRK 85 1.64e+8 8.12 462.65 168.78 86.34

than the design space with 10 points for one dimension.
Based on the precise estimation and expanded design space,

further optimization can be achieved, as shown in column
7, compared with column 6, in Table II. The performance
speed-up for COMBA is computed by comparing the optimal
performance found by MGDSE with the baseline performance
(without any optimization pragmas). The speed-up of [20] is
obtained by testing its optimal configuration in Vivado HLS
and comparing its performance with the baseline. We can see
that a broader range of optimization improves the performance
of applications significantly.

The detailed optimal configurations, returned by COMBA
are shown in Table IV. The array size denotes the length in
each dimension, which is set to the same value for arrays
in the same benchmark. Column 3 presents which loop or
function is pipelined, and column 4 shows the loop unrolling
factors of top loops. Note that there are two top-level loops in
the MM benchmark, and both of them are pipelined. For the
MVT benchmark, the top function is pipelined, and therefore
the two top loops are unrolled completely. Column 5 presents
the configuration of each array in corresponding benchmarks
with a format of “array name: (type, factor, dimension)”.

The last column in Table II shows the exploration time of our
algorithm. Compared with [20], the time cost of COMBA is
acceptable, considering the scale of the design space. For some
benchmarks, such as GEMM, SYR2K and SYRK, COMBA
even reduces the exploration time. We can therefore conclude
that the MGDSE algorithm is able to efficiently find the high-
performance configuration within minutes in an exponentially
increasing design space.

C. Application Case Studies
Real applications often contain various complicated code

structures. To evaluate the quality of our framework for analyz-
ing complex applications, we test another three benchmarks,
and the experimental results are shown in Table.V.

We choose “decode block” as the target function in the
JPEG benchmark, which is used in image decompression.
The code structure and corresponding design space have been
demonstrated in Section III-A. With five sub-functions and
three one-dimension arrays, function pipelining combined with
array partitioning is critical for this application. In addition,
loop unrolling also improves the performance, as discussed in
Section III-A. Figure 12 compares the latency speed-up (blue)
and initiation interval (orange) for different configurations. The
optimal configuration is “FP AllPartition”, which is used to

436

TABLE III
ESTIMATION ERROR COMPARISON FOR POLYBENCH

ATAX BICG GEMM GESUMMV MM MVT SYR2K SYRK

[20](%) 2.68 1.24 3.25 5.15 2.69 2.05 1.32 2.78

Ours(%) 0.71 0.33 0.46 1.25 0.83 0.48 0.47 0.44

TABLE IV
OPTIMIZATIONS OF POLYBENCH

Benchmark
Array

size
Optimizations

Pipeline Unroll Partition (array name: (type, factor, dimension))

ATAX 16 top-loop 2 A:(block,8,2); x:(complete,16,1); y:(block,8,1); tmp:(not partitioned)

BICG 32 top-loop 2 A:(block,16,2) (block,2,1); s:(block,16,1); p:(block,8,1); r,q:(not partitioned)

GEMM 16 top-loop 2 B:(block,8,2) (block,2,1); C:(cyclic,2,2); A:(not partitioned)

GESUMMV 16 top-loop 2 A,B:(block,8,2) (block,2,1); x:(complete,16,1); y,tmp:(not partitioned)

MM 8 top-loops(at the same level) 2,2 A,D,tmp:(complete,8,2); B,C:(complete,8,2) (complete,8,1)

MVT 16 top-function 16,16 y1,y2:(complete,16,1); A:(block,8,2) (block,2,1); x1,x2:(not partitioned)

SYR2K 16 top-loop 1 A,B:(complete,16,2); C:(not partitioned)

SYRK 16 top-loop 4 A,C:(complete,16,2)

TABLE V
EXPERIMENT RESULTS FOR CASE STUDY

Benchmark Estimation
Error(%)

Design
Space

Performance
Speed-up

MGDSE
Time(s)

JPEG 1.54 7.61e+12 28.8 613

Seidel 0.91 1.05e+10 153.6 407

Rician 1.12 1.05e+10 47.1 343

Fig. 12. Case study of JPEG

pipeline “decode block” and partition all the arrays (Huffbuff,
Quanbuff and Outbuff) completely. The loop unrolling pragma
“LU AllPartition” has close performance but is not as good as
“FP AllPartition”. After testing on our framework, COMBA
also returns the same optimal configuration, improving the
performance of “decode block” significantly, with a 28.8x
speed-up and a high throughput (II = 32cycles at 100 MHz).

The Seidel and Rician benchmarks have similar code
structures with two two-level nested loops, and execute in a
producer-consumer flow for which dataflow can be applied.
However, the optimization results for both applications are
different, as shown in Table V. The performance speed-up of
Seidel with the optimal configuration is much larger than that
of the Rician application. The reason is that the second loop
in Rician loads elements from and stores results to the same
array, leading to loop-carried dependence when it is pipelined.
Therefore, the advantage of pipelining weakens and higher
performance improvement cannot be achieved. Our framework
identifies the bottlenecks of complex applications successfully
and optimizes the performance as far as possible.

VIII. CONCLUSION

This paper presents COMBA, a comprehensive model-based
analysis framework to optimize complicated applications with
various code structures, which is practical and useful for the
optimization of real applications. Experiments demonstrate

that COMBA not only performs better than a previous work
on simple benchmarks, but also optimizes complex appli-
cations efficiently, within minutes. The tool is available at
http://www.ece.ust.hk/∼eeweiz/tools.html.

ACKNOWLEDGEMENTS

This work was supported by the RGC GRF grant 16245116.
We thank the anonymous reviewers for their helpful feedback.

REFERENCES

[1] J. Cong et al. Customizable domain-specific computing. IEEE Design
& Test of Computers, 28(2):6–15, 2011.

[2] X. Gao et al. Automatically optimizing the latency, area, and accuracy of
c programs for high-level synthesis. In Proc. of FPGA, pages 234–243,
2016.

[3] Y. Hara et al. Proposal and quantitative analysis of the chstone
benchmark program suite for practical c-based high-level synthesis.
JIPS, 17:242–254, 2009.

[4] Y.-K. Kwok et al. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors. TPDS, 7(5):506–
521, 1996.

[5] T. M. Lattner. An implementation of swing modulo scheduling with
extensions for superblocks. PhD thesis, Citeseer, 2005.

[6] P. Li et al. Resource-aware throughput optimization for high-level
synthesis. In Proc. of FPGA, pages 200–209, 2015.

[7] H.-Y. Liu et al. On learning-based methods for design-space exploration
with high-level synthesis. In Proc. of DAC, pages 1–7, 2013.

[8] N. K. Pham et al. Exploiting loop-array dependencies to accelerate the
design space exploration with high level synthesis. In DATE, pages
157–162, 2015.

[9] L. Pouchet. Polybench/c 4.2.
[10] A. Putnam et al. A reconfigurable fabric for accelerating large-scale

datacenter services. In Proc. of ISCA, pages 13–24, 2014.
[11] B. R. Rau. Iterative modulo scheduling: An algorithm for software

pipelining loops. In Proc. of MICRO, pages 63–74, 1994.
[12] Y. S. Shao et al. Aladdin:a pre-rtl, power-performance accelerator

simulator enabling large design space exploration of customized archi-
tectures. In Proc. of ISCA, pages 97–108, 2014.

[13] S. Sinha et al. Dataflow graph partitioning for area-efficient high-level
synthesis with systems perspective. TODAES, 20(1):5, 2014.

[14] S. Wang et al. Flexcl: An analytical performance model for opencl
workloads on flexible fpgas. In Proc. of DAC, 2017.

[15] Z. Wang et al. A performance analysis framework for optimizing opencl
applications on fpgas. In Proc. of HPCA, pages 114–125, 2016.

[16] Xilinx. https://www.xilinx.com/support.html.
[17] Xilinx. Vivado design suite user guide high-level synthesis v2016.1,

www.xilinx.com.
[18] C. Zhang et al. Optimizing fpga-based accelerator design for deep

convolutional neural networks. In Proc. of FPGA, pages 161–170, 2015.
[19] G. Zhong et al. Design space exploration of multiple loops on fpgas

using high level synthesis. In Proc. of ICCD, pages 456–463, 2014.
[20] G. Zhong et al. Lin-analyzer: a high-level performance analysis tool for

fpga-based accelerators. In Proc. of DAC, page 136, 2016.

437

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

