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FPGA Overview

• Field-Programmable Gate Array (FPGA)
• Customizable logic blocks and wirings

• On-chip memory and arithmetic units
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High-Level Synthesis (HLS)

• C/C++ → hardware description languages

• Front-end

• Intermediate representation (IR) generation

• Bitwidth reduction, loop unrolling, etc

• Back-end

• Resource allocation, scheduling, binding

• Register-transfer level (RTL) code generation

• Directives to tune latency/resource

• Loop unrolling: duplicate loop copies

• Loop pipelining: pipeline stages

• Array partitioning: split memories

4



FPGA Power Issue

• A key design constraint

• Single FPGA: increase with size and density; heterogeneous systems

• Multiple FPGAs: large-scale applications / datacenters
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FPGA Power Evaluation

• Go through synthesis, placement and routing → a long time

• Estimation: gate-level power analysis

• Measurement: onboard measurement

• Design-time power analysis: 

• Trade off between performance / resource / power

• → Large run-time overheads
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Contributions

• HL-Pow framework: Fast and early-stage power estimation 

• DSE framework: Power-oriented design space exploration (DSE)
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Low-Level Power Modeling

• Component-based power characterization

• Power library: input-power mapping per component [shao et al, 2014]

• Consider variations in bitwidths/cell selection, etc

• Aggregation of component power for design power
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High-Level Power Modeling

• Tile-based power modeling 

• Target: affine functions [Zuo et al, 2015]

• Decompose the functions into tiles

• Power characterization for tiles
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High-Level Power Modeling

• Phase-based power modeling 

• Target: OpenCL

• Work groups & work items in OpenCL [Liang et al, 2018]

• Power phases in groups/items
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Motivation

• Problems of power modeling works

• Long time for power characterization

• Require hardware expertise

• Dedicate to specific code structures/applications
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Pre-RTL power modeling

High accuracy

High efficiency

High generalization ability
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Overall Design Flow
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Overall Design Flow
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• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power 
values

• Power model training

• Prediction phase

• Pass through HLS

• Feature construction

• Power inference



Data Collection
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• FPGA power decomposition
• Static power: leakage power when the design is powered up, related to the 

scale of the design

• Dynamic power: proportional to signal activity, capacitance, voltage and 
frequency

• Data files collected from HLS for each design point

• Overall design: HLS report (xxx.verbose.rpt.xml), IR code (a.o.3.bc)

• Individual operator: IR operator information (xxx.adb), RTL operator 
information (xxx.adb.xml)



Feature Construction: Architecture 
Features
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• Resource Utilization
• Look-up table (LUT)

• Digital signal processing (DSP)

• Flip-flop (FF)

• Block random access memory (BRAM)

• Performance

• Latency in cycles

• Frequency in nano-seconds

• Scaling factors of metrics

• Baseline design: the design point without any optimization

• Normalize across different applications



Feature Construction: Activity 
Features
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• Conduct in high-level instead of gate-level

• IR annotator: add activity tracking functions in IR

• Activity generator: collect cycle-level activities

• Histogram constructor: construct activity features

IR code 

IR op info

RTL op info

Testbench Act track func lib

Activity 
generator
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Activity 
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Activity Features: IR Annotator
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• Instrument the IR code with activity tracking functions for 
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• RTL operator: in hardware
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• Multiple IR ops             one RTL op

• Match IR ops to RTL ops by netlist name



Activity Features: IR Annotator
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• Instrument the IR code with activity tracking functions for 
each RTL operator

• IR operator: in IR code

• RTL operator: in hardware

• RTL-to-IR back tracing
• Multiple IR ops             one RTL op

• Match IR ops to RTL ops by netlist name

• Activity tracking

• Add activity tacking functions

• Record cycle-level input/output + RTL op ID

• Generate an annotated IR code



Activity Features: Activity 
Generator
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• Compute average activities of each RTL operator

• Compile into link files (.o)

• Combine, compile into executable

• Run with input vectors

• Create an activity table per RTL op



Activity Features: Activity 
Generator
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• Hamming distance: count differences bit by bit

• Average the activity per RTL op

• Amortize the activities over the total execution 

Hamming distance

Avg. across cycles & operands

Op exe cycles / latency



Activity Features: Histogram 
Constructor
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• Operator activities → features

• Fix the size of the feature set 

• Use a histogram representation

• Allocate a histogram per opcode

• Features per bin: #ops, percentage, average activity
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Power Modeling

29

• 256 features: 11 architecture features, 245 activity features

• Ground truth power values through onboard measurement

• Regression models

• Linear regression: classic linear model, LASSO

• Support vector machine (SVM): RBF kernel

• Tree-based model: decision tree, ensemble model

• Neural network: CNN, ResNet

Data normalization

Feature selection

Cross validation
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Architecture features
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Experimental Results
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• Experimental setup

• Training: 15 applications / 8784 design points 

• Testing: 6 applications / 2542 design points (> 20%)

• Accuracy of power modeling

• Show the best instance per type

• Linear/SVM: ~10% test error

• CNN: 4.67% test error
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Design Space Exploration (DSE)
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• Latency: by HLS

• Power: by our power modeling flow (HL-Pow)

• Trade off between latency and power

• Brute-force DSE: HLS run-time overheads

• To speed up DSE: design point sampling



Design Space Exploration (DSE)
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• 1. Design space pruning & division

• Remove repetitive design points

• Pipeline outer loop = unroll inner loops

• Divide design space by partitioning factor

• 2. Initial sampling

• Collect the first set of design points to assess

• Power trend

• Pipeline outer loop > pipeline inner loop > no pipeline

• Large unrolling factor > small unrolling factor

• Grid representation of unroll/pipeline

• Select boundary and middle points



Design Space Exploration (DSE)
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• 3. Design evaluation

• Use HLS for latency evaluation

• Use HL-Pow for fast power evaluation

• 4. Pareto frontier search

• Approximate Pareto frontier from sampling points

• Trade off between latency and power



Design Space Exploration (DSE)
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• 5. Candidate selection

• Standard deviation reduction (SDR): the higher SDR, the larger impact

• SDR: pipeline > unroll → latency/power impact: pipeline > unroll

• Order sequence: first pipeline, second unroll

• Select middle points of two pareto-optimal points



Design Space Exploration (DSE)
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• Algorithm decomposition

• 1. Design space pruning & division

• 2. Initial sampling

• 3. Design evaluation

• 4. Pareto frontier search

• 5. Candidate selection

iterate



Experimental Results
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• Design space exploration

• Metric: average distance to reference set 
(ADRS), to see how close two Pareto set is

• Initial sampling rates: different rates 
converge, but a small rate benefits small 
sampling budgets

• Total sampling budgets:

• 20%: ADRS = 2.35%

• 40%: ADRS = 1.84%

• ADRS decreases rapidly as the sampling 
budget increases from the start

Initial sampling rates

Sampling budgets

Initial sampling rate = 2%
Sampling budget = 20%
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Conclusion
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HL-Pow: HLS power modeling

Early-stage

Accurate

Fast

High generalization ability

Power-oriented DSE

Characteristics of HLS directives

Trim down design space

Iterative search flow
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