
HL-Pow: A Learning-Based Power

Modeling Framework for High-Level

Synthesis

Zhe Lin1, Jieru Zhao1, Sharad Sinha2, Wei Zhang1

1Hong Kong University of Science and Technology (HKUST)
2Indian Institute of Technology (IIT) Goa

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

1

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

2

FPGA Overview

• Field-Programmable Gate Array (FPGA)
• Customizable logic blocks and wirings

• On-chip memory and arithmetic units

3

High-Level Synthesis (HLS)

• C/C++ → hardware description languages

• Front-end

• Intermediate representation (IR) generation

• Bitwidth reduction, loop unrolling, etc

• Back-end

• Resource allocation, scheduling, binding

• Register-transfer level (RTL) code generation

• Directives to tune latency/resource

• Loop unrolling: duplicate loop copies

• Loop pipelining: pipeline stages

• Array partitioning: split memories

4

FPGA Power Issue

• A key design constraint

• Single FPGA: increase with size and density; heterogeneous systems

• Multiple FPGAs: large-scale applications / datacenters

5

FPGA Power Evaluation

• Go through synthesis, placement and routing → a long time

• Estimation: gate-level power analysis

• Measurement: onboard measurement

• Design-time power analysis:

• Trade off between performance / resource / power

• → Large run-time overheads

6

RTL
design

Logic
synthesis

Placement

Routing

Gate-level
netlist

Bitstream

Power
estimation

Power
measurement

Contributions

• HL-Pow framework: Fast and early-stage power estimation

• DSE framework: Power-oriented design space exploration (DSE)

7

App.

C/C++

Directives

Testbench
High-Level
Synthesis Design Space

Exploration

Power
Modeling

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

8

Low-Level Power Modeling

• Component-based power characterization

• Power library: input-power mapping per component [shao et al, 2014]

• Consider variations in bitwidths/cell selection, etc

• Aggregation of component power for design power

9

High-Level Power Modeling

• Tile-based power modeling

• Target: affine functions [Zuo et al, 2015]

• Decompose the functions into tiles

• Power characterization for tiles

10

High-Level Power Modeling

• Phase-based power modeling

• Target: OpenCL

• Work groups & work items in OpenCL [Liang et al, 2018]

• Power phases in groups/items

11

Motivation

• Problems of power modeling works

• Long time for power characterization

• Require hardware expertise

• Dedicate to specific code structures/applications

12

Pre-RTL power modeling

High accuracy

High efficiency

High generalization ability

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

13

Overall Design Flow

14

• Training phase

• Collect training applications

• Pass through HLS

Overall Design Flow

15

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

Overall Design Flow

16

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power
values

Overall Design Flow

17

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power
values

• Power model training

Overall Design Flow

18

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power
values

• Power model training

• Prediction phase

• Pass through HLS

Overall Design Flow

19

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power
values

• Power model training

• Prediction phase

• Pass through HLS

• Feature construction

Overall Design Flow

20

• Training phase

• Collect training applications

• Pass through HLS

• Feature construction

• RTL implementation

• Collect ground truth power
values

• Power model training

• Prediction phase

• Pass through HLS

• Feature construction

• Power inference

Data Collection

21

• FPGA power decomposition
• Static power: leakage power when the design is powered up, related to the

scale of the design

• Dynamic power: proportional to signal activity, capacitance, voltage and
frequency

• Data files collected from HLS for each design point

• Overall design: HLS report (xxx.verbose.rpt.xml), IR code (a.o.3.bc)

• Individual operator: IR operator information (xxx.adb), RTL operator
information (xxx.adb.xml)

Feature Construction: Architecture
Features

22

• Resource Utilization
• Look-up table (LUT)

• Digital signal processing (DSP)

• Flip-flop (FF)

• Block random access memory (BRAM)

• Performance

• Latency in cycles

• Frequency in nano-seconds

• Scaling factors of metrics

• Baseline design: the design point without any optimization

• Normalize across different applications

Feature Construction: Activity
Features

23

• Conduct in high-level instead of gate-level

• IR annotator: add activity tracking functions in IR

• Activity generator: collect cycle-level activities

• Histogram constructor: construct activity features

IR code

IR op info

RTL op info

Testbench Act track func lib

Activity
generator

Histogram
constructor

IR
annotator

Activity
features

Activity Features: IR Annotator

24

• Instrument the IR code with activity tracking functions for
each RTL operator

• IR operator: in IR code

• RTL operator: in hardware

• RTL-to-IR back tracing

• Multiple IR ops one RTL op

• Match IR ops to RTL ops by netlist name

Activity Features: IR Annotator

25

• Instrument the IR code with activity tracking functions for
each RTL operator

• IR operator: in IR code

• RTL operator: in hardware

• RTL-to-IR back tracing
• Multiple IR ops one RTL op

• Match IR ops to RTL ops by netlist name

• Activity tracking

• Add activity tacking functions

• Record cycle-level input/output + RTL op ID

• Generate an annotated IR code

Activity Features: Activity
Generator

26

• Compute average activities of each RTL operator

• Compile into link files (.o)

• Combine, compile into executable

• Run with input vectors

• Create an activity table per RTL op

Activity Features: Activity
Generator

27

• Hamming distance: count differences bit by bit

• Average the activity per RTL op

• Amortize the activities over the total execution

Hamming distance

Avg. across cycles & operands

Op exe cycles / latency

Activity Features: Histogram
Constructor

28

• Operator activities → features

• Fix the size of the feature set

• Use a histogram representation

• Allocate a histogram per opcode

• Features per bin: #ops, percentage, average activity

+ +

+ +1

+1

SA: 1.5

SA: 2.2

0 2 4 6 8 10

ops

percentage

avg. activity

Per-bin information

Power Modeling

29

• 256 features: 11 architecture features, 245 activity features

• Ground truth power values through onboard measurement

• Regression models

• Linear regression: classic linear model, LASSO

• Support vector machine (SVM): RBF kernel

• Tree-based model: decision tree, ensemble model

• Neural network: CNN, ResNet

Data normalization

Feature selection

Cross validation

16

16

Architecture features

Activity features

16-by-16 mesh

Data normalization

Based on widely used instances

Experimental Results

30

• Experimental setup

• Training: 15 applications / 8784 design points

• Testing: 6 applications / 2542 design points (> 20%)

• Accuracy of power modeling

• Show the best instance per type

• Linear/SVM: ~10% test error

• CNN: 4.67% test error

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

31

Design Space Exploration (DSE)

32

• Latency: by HLS

• Power: by our power modeling flow (HL-Pow)

• Trade off between latency and power

• Brute-force DSE: HLS run-time overheads

• To speed up DSE: design point sampling

Design Space Exploration (DSE)

33

• 1. Design space pruning & division

• Remove repetitive design points

• Pipeline outer loop = unroll inner loops

• Divide design space by partitioning factor

• 2. Initial sampling

• Collect the first set of design points to assess

• Power trend

• Pipeline outer loop > pipeline inner loop > no pipeline

• Large unrolling factor > small unrolling factor

• Grid representation of unroll/pipeline

• Select boundary and middle points

Design Space Exploration (DSE)

34

• 3. Design evaluation

• Use HLS for latency evaluation

• Use HL-Pow for fast power evaluation

• 4. Pareto frontier search

• Approximate Pareto frontier from sampling points

• Trade off between latency and power

Design Space Exploration (DSE)

35

• 5. Candidate selection

• Standard deviation reduction (SDR): the higher SDR, the larger impact

• SDR: pipeline > unroll → latency/power impact: pipeline > unroll

• Order sequence: first pipeline, second unroll

• Select middle points of two pareto-optimal points

Design Space Exploration (DSE)

36

• Algorithm decomposition

• 1. Design space pruning & division

• 2. Initial sampling

• 3. Design evaluation

• 4. Pareto frontier search

• 5. Candidate selection

iterate

Experimental Results

37

• Design space exploration

• Metric: average distance to reference set
(ADRS), to see how close two Pareto set is

• Initial sampling rates: different rates
converge, but a small rate benefits small
sampling budgets

• Total sampling budgets:

• 20%: ADRS = 2.35%

• 40%: ADRS = 1.84%

• ADRS decreases rapidly as the sampling
budget increases from the start

Initial sampling rates

Sampling budgets

Initial sampling rate = 2%
Sampling budget = 20%

Outline

• Introduction

• Related Work

• Power Modeling Framework

• Design Space Exploration

• Conclusion

38

Conclusion

39

HL-Pow: HLS power modeling

Early-stage

Accurate

Fast

High generalization ability

Power-oriented DSE

Characteristics of HLS directives

Trim down design space

Iterative search flow

THANK YOU

Q & A

Operator type

41

Directive

42

ADRS

43

