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Motivation:  High-Level Synthesis

1. Describe Hardware at High Level

e.g. from C/C++ to Verilog

void func(int a, int
b[N])
{

int i;
for (i=0; i<N; i++)

b[i] = a + i;
}

C/C++ Code
#pragma HLS unroll
#pragma HLS pipeline
#pragma HLS array_partition
#pragma HLS resource

……
……

HLS Directives

RTL Synthesis

Placement & Routing

module func
(

input clk,     input rst,
output [3:0] addr,
input [3:0] indata,
output [3:0] outdata

)
begin
//…

end    

Verilog Code

FPGA Bitstream

High-Level Synthesis2. Fast Development of FPGA design

3. Friendly to Complex Applications
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Motivation:  Dynamic Memory Management

1. Feature of High-Level Language

e.g. malloc(), free(), new, delete

2. Flexible and Efficient

make full use of memory

3. Unsupported by current HLS

if DMM in HLS realized, 

the utilization of BRAMs will be raised

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

C/C++ Code with DMM

HLS Failure

Block-RAM on FPGA

Resource Constraint

High Performance
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Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

Where to store dynamic data 

on FPGA?

Heaps

(Block-RAMs on FPGA)

Memory block 0

Memory block 1

Memory block N-1

Memory block N-2

A Heap

Memory block 2

Memory block 3

int *a



Hardware Allocator
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Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

Who will manage the dynamic 

memory on FPGA?

1. Low Latency

2. High Utilization of BRAM

3. Large Management Capability

with Low Overhead of Area

Record which blocks are used.

Allocate memory according to 

required size



Hardware Allocator
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Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

Who will manage the dynamic 

memory on FPGA?

1. Low Latency

2. High Utilization of BRAM

3. Large Management Capability

with Low Overhead of Area

Hundreds of cycles?

Fixed-size Allocation?

DOMMU

SysAlloc / DMM-HLS

High overhead?

AMMU



Hardware Allocator
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Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

Who will manage the dynamic 

memory on FPGA?

1. Low Latency

2. High Utilization of BRAM

3. Large Management Capability

with Low Overhead of Area

Hi-DMM Allocators
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Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

How can it be synthesized

into a high-performance

design with HLS features?

Source Code Compiler

1. Source Code Transformation

2. Resource Mapping

3. Adaption to HLS Directives

Automatic Transformation?

Resource Mapping?

HLS Directive Compatibility?

Previous Works



11

Motivation:  Challenges for DMM in HLS

int *a     =      (int *)     malloc (n * sizeof(int));

How can it be synthesized

into a high-performance

design with HLS features?

Source Code Compiler

1. Source Code Transformation

2. Resource Mapping

3. Adaption to HLS Directives
Hi-DMM Compiler
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Motivation:  Hi-DMM

int *a     =      (int *)     malloc (n * sizeof(int));

Who will manage the dynamic 

memory on FPGA?

How can it be synthesized

into a high-performance

design with HLS features?

Hardware Allocator

Hi-DMM Allocators

Source Code Compiler

Hi-DMM Compiler

Hi-DMM
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Overview:  Workflow of Hi-DMM

Hi-DMM Compiler

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

Source Code of Accelerator with DMM

int offset_a = Hi_malloc(n, allocator1);
…
Hi_free(offset_a);

Source Code Compatible with HLS

High-Level Synthesis

Compilation-time Run-time

Computation 

Logic

Static

Memory

Heap 0

Heap M

Accelerator IP Block 

integrated with Heaps

Hi-DMM Allocator IP Blocks

Basde on Buddy Tree
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Overview:  Workflow of Hi-DMM

Hi-DMM Compiler

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

Source Code of Accelerator with DMM

int offset_a = Hi_malloc(n, allocator1);
…
Hi_free(offset_a);

Source Code Compatible with HLS

High-Level Synthesis

Compilation-time Run-time

Computation 

Logic

Static

Memory

Heap 0

Heap M

Accelerator IP Block 

integrated with Heaps

Hi-DMM Allocator IP Blocks

Basde on Buddy TreeUn-synthesizable

Synthesizable

Based on Clang

Accelerator IP Block 

integrated with Heaps
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Overview:  Workflow of Hi-DMM

Hi-DMM Compiler

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

Source Code of Accelerator with DMM

int offset_a = Hi_malloc(n, allocator1);
…
Hi_free(offset_a);

Source Code Compatible with HLS

High-Level Synthesis

Compilation-time Run-time

Computation 

Logic

Static

Memory

Heap 0

Heap M

Accelerator IP Block 

integrated with Heaps

Hi-DMM Allocator IP Blocks

Basde on Buddy Tree

Accelerator can send request to the 

allocators and get an available address.
Both of the accelerator and the allocators 

are described in C and synthesized by 

Vivado HLS.
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Overview:  Workflow of Hi-DMM

Hi-DMM Compiler

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

Source Code of Accelerator with DMM

int offset_a = Hi_malloc(n, allocator1);
…
Hi_free(offset_a);

Source Code Compatible with HLS

High-Level Synthesis

Compilation-time Run-time

Computation 

Logic

Static

Memory

Heap 0

Heap M

Accelerator IP Block 

integrated with Heaps

Hi-DMM Allocator IP Blocks

Basde on Buddy Tree

Accelerator can send request to the 

allocators and get an available address.
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Overview:  Workflow of Hi-DMM

Hi-DMM Compiler

int *a = (int *) malloc(n * sizeof(int));
…
free(a);

Source Code of Accelerator with DMM

int offset_a = Hi_malloc(n, allocator1);
…
Hi_free(offset_a);

Source Code Compatible with HLS

High-Level Synthesis

Compilation-time Run-time

Computation 

Logic

Static

Memory

Heap 0

Heap M

Accelerator IP Block 

integrated with Heaps

Hi-DMM Allocator IP Blocks

Basde on Buddy Tree

Then the accelerator can access the heaps 

with the address directly.
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption
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Software: Hi-DMM Compiler

1. Name

2. Type

3. Width

4. Allocation Requester

5. Granularity

6. Type of Access

7. Dependencies

8. Directive for Pointers

9. Directive involving Pointers

Definition of Pointers

Allocation Function Call

Access to Pointers

HLS Directives

int *a, *b, c; 

ap_unint<13> *e, f, *g;

a = (int*) malloc(n*sizeof(int)); 

e = (ap_unint<13> *) malloc(100*sizeof(ap_unint<13> )); 

h = (User_Struct *) malloc(sizeof(User_Struct )); 

a[i] = b[j] + c; 

e = g;

h->next = k; 

h->val = 123; 

float *x, *y, z; 

User_Struct *h, *k;

#pragma HLS array_partition variable=xxx factor=xxx

#pragma HLS unroll factor=xxx

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

A

B

C

D

E

Heap 0 

Heap 1 

Pointers Heaps Allocators

② Depth of heap?

①Mapping?
③Allocator ?
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Software: Hi-DMM Compiler

A

B

C D

E

A

B

C

D

E

Heap 0 

Heap 1 

Pointers Heaps Allocators

①Mapping?

1. Map Pointers to heaps

Co-operations 

between pointers:

A[i] = B[j] + C[i];

…

D[k] = A[i] + B[m];

…

2 co-operations 

between A and B

A

B

C D

E

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2

Karger

Algorithm

Fully-Connected 

Graph

Separated

Sub-graphs

Max-Cuts
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Software: Hi-DMM Compiler

A

B

C

D

E

Heap 0 

Heap 1 

Pointers Heaps Allocators

①Mapping

1. Map Pointers to heaps

A

B

C D

E

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

Karger

Algorithm

Separated

Sub-graphs

Max-Cuts

Pointer

Mapping

Heap 0 Heap 1
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Software: Hi-DMM Compiler

A

B

C

D

E

Heap 0 

Heap 1 

Pointers Heaps Allocators

2. Assign BRAM resource to heaps

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

Pointer

Mapping

Resource

Mapping

Heap 0 Heap 1

①Mapping

② Depth of heap

Heap 0

Heap 1 
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Software: Hi-DMM Compiler

A

B

C

D

E

Heap 0 

Heap 1 

Pointers Heaps Allocators

3.  Map heaps to allocators

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

①Mapping

② Depth of heap

Heap 0

Heap 1 

Depths of Heaps

Type

Width

Granularity

………

Hybrid Tree

K-way Tree

Heap 0 

Heap 1 

Hybrid Tree

K-way Tree

Map Heaps to Allocators

③Allocator
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

Definition of DMM Heaps

DMM Interface

int Hi_DMM_Heap_0[8192];

ap_uint<7> Hi_DMM_Heap_1[2048];

#pragma HLS array_partition variable=Hi_DMM_Heap_1 cyclic  factor=4

void TOP(hidmm_alloc_port *Hi_DMM_allocator_0)

{

#pragma HLS interface ap_hs port = Hi_DMM_allocator_0

….

}

Function Calls

offset_local_dis = HLS_malloc<8192>(n, Hi_DMM_allocator_1_Super_HTA8k;

Accesses to “Struct” Pointers

//head->VAL = data[0];

head[OFFSET_LIST_VAL] = data[0];

Assignment of Pointers (from one to another one)

// now = tail;

offset_now = offset_tail;

1.  Transformation



#pragma HLS unroll factor=3

#pragma HLS array_partition factor=3 cyclic

Example without DMM: Operations mapped to corresponding partitions
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2.  Adaption to HLS Directives

e.g. Loop Transformation for Loop Unrolling

2 0

Op-1 Op-2 Op-3

Blk-1 Blk-2 Blk-3

Iteration

Static

Array
0

Op-0

Blk-0

1

Loop Unrolling



#pragma HLS unroll factor=3

#pragma HLS array_partition factor=3 cyclic

Example with DMM: Operations mapped to all partitions
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2.  Adaption to HLS Directives

4. Allocation Requester

5. Granularity

21 0

Op-1 Op-2 Op-3

21 3

Blk-1 Blk-2 Blk-3

Heap 0

0

Blk-0

Op-0

Dynamic

Array

Iteration

e.g. Loop Transformation for Loop Unrolling

Loop Unrolling

Location of dynamic array is unknown.



#pragma HLS unroll factor=3

#pragma HLS array_partition factor=3 cyclic

Example with DMM: Operations mapped to all partitions
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2.  Adaption to HLS Directives

4. Allocation Requester

5. Granularity

2 0

Op-1 Op-2 Op-3

21 3

Blk-1 Blk-2 Blk-3

Heap 0

0

Blk-0

Op-0

Dynamic

Array

Iteration

e.g. Loop Transformation for Loop Unrolling

Loop Unrolling

1

Location of dynamic array is unknown.



#pragma HLS unroll factor=3

#pragma HLS array_partition factor=3 cyclic

Example with DMM: Operations mapped to all partitions
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2.  Adaption to HLS Directives

4. Allocation Requester

5. Granularity

Op-1 Op-2 Op-3

21 3

Blk-1 Blk-2 Blk-3

0

Blk-0

Op-0

Dynamic

Array

Iteration

e.g. Loop Transformation for Loop Unrolling

Location of dynamic array is unknown.

Loop Unrolling

21 0Heap 0
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

2.  Adaption to HLS Directives

2 0

Op-1 Op-1 Op-2 Op-3

Iterations

Dynamic 

array
53 4

Blk-1 Blk-3 Blk-4 Blk-5

Heap 2

Op-0

0
Blk-0

10

1

0

Op-0

2
Blk-2

1

Loop 1 Loop 2

e.g. Loop Transformation for Loop Unrolling

Loop Unrolling

Solution: Loop Splitting
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Software: Hi-DMM Compiler

Detection

Analysis

&

Resource Mapping

Transformation

&

Adaption

Generated Vivado Project

HLS

Accelerator IP 

with DMM

Hi-DMM

Interconnect

Accelerator

Allocator 0
Allocator 1

Allocator 2
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Hardware: Hi-DMM Allocators

What do allocators do?

Memory block 0

Memory block 1

Memory block N-2

Memory block N-1

A Heap

Memory block 2

Memory block 3

int *a

1. Record which blocks in the heap are used 2. Allocate memory according to the size

Accelerator Request: 2 blocks

Allocator Response: Address of available blocks

Available blocks
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Hardware: Hi-DMM Allocators

Compare with Previous Works

Previous Mechanism Allocation Latency Resource Cost Memory Efficiency

Buddy Tree medium high high

Fixed-Size Blocks high low low

Free List high medium high

Proposed Mechanism Allocation Latency Resource Cost Memory Efficiency

Hi-DMM Allocators low low high

Hi-DMM allocators are based on buddy tree.
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Hardware: Hi-DMM Allocators

Compare among Hi-DMM Allocators

Hi-DMM Mechanism Allocation Latency Resource Cost Highlights

Fast Buddy Tree
Very low

(~10 cycles)
Low

Fast allocator

for small heap

Pre-Allocation Tree
Very low

(~5 cycles)
Low

Pre-allocate a block 

for next request

Hybrid Tree
Low

(~20 cycles)
Very low

Very large

management capability

K-Way Tree
Extremely low

(~1 cycles)
Extremely Low

Fixed-size allocator for

user-defined struct

Meet the requirements of various applications
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Hardware: Buddy Tree

16KB

8KB 8KB

4KB 4KB 4KB 4KB

2KB 2KB 2KB 2KB 2KB 2KB 2KB 2KB

• Conventional Buddy Tree Allocation:

– Splits the entire space of heap repetitively in half to find an 

available memory block best fitting the size of request. 
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Hardware: Buddy Tree

• Conventional Buddy Tree Allocation:

8KB 8KB

4KB 4KB 4KB 4KB

2KB 2KB 2KB 2KB 2KB 2KB 2KB

Allocation Example

16KB

2KB
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Hardware: Buddy Tree

• Conventional Buddy Tree Allocation:

Maintenance Example

16KB

8KB 8KB

4KB 4KB

2KB 2KB 2KB 2KB

4KB 4KB

2KB 2KB 2KB 2KB

Mark Upwards

Mark Downwards
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Hardware: Hi-DMM Allocators

• Fast Buddy Tree Allocator (FBTA):

1. Allocation without searching layer by layer, based on bit operation 

0

1 0

0 0

0 0 1 0

1 1

1 1 1 1

Bit-Vector (BV) Buddy Tree

0

1  0
1  1  0  0

1  1  1  1  0  0  1  0
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Hardware: Hi-DMM Allocators

• Fast Buddy Tree Allocator (FBTA):

1  1  1  1  0  0  1  0BV =

- BV =

0  0  0  0  0  0  1  0(-BV) &BV =

0  0  0  0  1  1  1  0

Index

(two's complement)

Log2 

MUX

How to find the lowest set (i.e. 1) bit in BV? 

1. Allocation without searching layer by layer, based on bit operation 
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Hardware: Hi-DMM Allocators

• Fast Buddy Tree Allocator (FBTA):

2. Maintenance parallelized

16KB

8KB 8KB

4KB 4KB

2KB 2KB 2KB 2KB

4KB 4KB

2KB 2KB 2KB 2KB

Mark Upwards

Mark Downwards
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Hardware: Hi-DMM Allocators

• Fast Buddy Tree Allocator (FBTA):

2. Maintenance parallelized

8KB

16KB

8KB

4KB 4KB

2KB 2KB 2KB 2KB

4KB 4KB

2KB 2KB 2KB 2KB

Pipeline
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Hardware: Hi-DMM Allocators

• Pre-Allocation Tree Allocator (PATA):

Based on FBTA but can pre-allocate before the request

Locality of Allocation

Temporal: An allocation request is usually followed closely by another one.

Spatial: Those allocation requests close to each other usually ask for similar size.

Req 0 Req 1 Req 2 Req 3 Req 4 Req 5 Req 6

Close Similar Size
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Hardware: Hi-DMM Allocators

• Hybrid Tree Allocator (HTA):

Based on FBTA but can manage those wide bit-vectors with thousands of bits.

0 0 0 01 1 1 10 0 1 0Wide BV:

Resource  /  Latency
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Hardware: Hi-DMM Allocators

• Hybrid Tree Allocator (HTA):

Based on FBTA but can manage those wide bit-vectors with thousands of bits.

Solution: use BV to mange a wide BV

0 0 0 01 1 1 10 0 1 0

1 1 00 11 1Group Tree BV:Group BV:

Wide BV:
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Hardware: Hi-DMM Allocators

• K-Way Tree Allocator (KWTA):

Scenario: Dynamic Data Structure

Waste of Resource

Further Lower Latency Required

Buddy Tree?

Characteristics:

1. Fixed-size:   

tree_node

queue_element

2. Frequent (De-)Allocation Operations

insert_tree_node()

queue_pop()

Manage fine-grained fixed-size user-defined struct variables
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Hardware: Hi-DMM Allocators

• K-Way Tree Allocator (KWTA):

Manage user-defined struct variables with extremely low latency

Group BV

Summary BV

R

8 7 6 5 4 3 2 1

40 39 38 37 36 35 34 33

Mini-Heap              

Following requests will 

be handled by the cache.

Mini-Heap:              

Mini-Heap:  

a cache of 

fixed-size blocks

An block will be 

allocated from the cache.
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Evaluation: Allocator Performance

@ 100MHz with Zynq-7020

1
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Request handled by SysAlloc

(Hundreds of cycles)

Allocation

Latency
Request handled by Hi-DMM

(Tens of cycles)
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Evaluation: Allocator Resource

@ 100MHz with Zynq-7020

0

5

10

15

20

25

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

FBTA PATA HTA KWTA SysAlloc

U
ti

li
za

ti
o
n

 o
f 

B
R

A
M

/ 
%

Management Capability / MAUs

0

5

10

15

20

25

30

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

FBTA PATA HTA KWTA SysAlloc

U
ti

li
za

ti
o
n

 o
f 

L
U

T
/ 

%

Management Capability / MAUs

LUT Usage BRAM Usage

Resource cost by HTA is much lower than FBTA.
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Evaluation: Memory Efficiency of KWTA

@ 100MHz with Zynq-7020

Reuse Utilization
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Evaluation: Source Code Optimization

Pointer Mapping

Calculation with Multiple Matrices:   ABCD + EF

Assign all pointers to 1 heap:

Automatically distributes pointers 

to 2 heaps with Hi-DMM
: 125033 cycles

133033 cycles

6.0%
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Evaluation: Source Code Optimization

Loop Transformation

Reduction Operation based on Dynamic Arrays 

(unroll_factor = 4)

With loop transformation:

Without loop transformation:

412~812 cycles

842 cycles

51.1%
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Evaluation: Source Code Optimization

Allocation Selection

Shortest Path Faster Algorithm (SPFA) with a queue

KWTA:

HTA:

15890 cycles

16840 cycles

HTA with pre-allocation: 16563 cycles

0.84%

6.34%

4.72%
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Hi-DMM is open to the community

https://github.com/zslwyuan/Hi-DMM
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Conclusion

60

– Software: Hi-DMM Compiler
• Automatic Transformation

• HLS-Friendly

• Couple with commercial tools (Vivado / Vivado HLS)

– Hardware: Hi-DMM Allocator
• High Performance

• HLS-Friendly

• Adaptive to various applications

– Future Works
• Consider more DMM characteristics

• Further improve the performance of allocators



Thanks!

61

Hi


