Hi-DMM:
High-Performance Dynamic Memory Management
In High-Level Synthesis

ru Zha Sharad Sinha, and Wei Zhang

ong Uni y of Science and Technology (HKUST)
~+ Indian | hnology Goa (lIT Goa)

* Motivation

* Overview of HI-DMM

* Implementation of Software

* Implementation of Hardware

« Evaluation of HI-DMM

* Open-Source HI-DMM Platform
» Conclusion

 Motivation

Motivation: High-Level Synthesis

C/C++ Code
.] id func(int a, int
1. Describe Hardware at High Level PIND
e.g. from C/C++ to Verilog iy '{izo; <N i+4)
bli] =a+1i;

2. Fast Development of FPGA design

Verilog Code

module func

(

3. Friendly to Complex Applications input clk, _input rst,

output [3:0] addr,
input [3:0] Indata,
output [3:0] outdata

begin

end

HLS Directives

#pragma HLS unroll
#pragma HLS pipeline
#pragma HLS array_partition
#pragma HLS resource

RTL Synthesis

Placement & Routing

FPGA Bitstream

Motivation: Dynamic Memory Management

1. Feature of High-Level Language

e.g. malloc(), free(), new, delete

2. Flexible and Efficient

make full use of memory

3. Unsupported by current HLS

If DMM in HLS realized,
the utilization of BRAMSs will be raised

C/C++ Code with DMM
int *a = (int *) malloc(n * sizeof(int));

Hée(a);

HLS Failure

Block-RAM on FPGA

High Performance
Resource Constraint

Motivation: Challenges for DMM in HLS

(iint *) malloc (n *sizeof(int));

Where to store dynamic data
on FPGA?
Memory block 0
Heaps Memory block 1
(Block-RAMs on FPGA) Int *a Memory block 2

Memory block 3
. > A Heap

Memory block N-1
Memory block N-2 | 6

Motivation: Challenges for DMM in HLS

(int*) malloc

Who will manage the dynamic
memory on FPGA?

Hardware Allocator

1. Low Latency
2. High Utilization of BRAM

3. Large Management Capability
with Low Overhead of Area

(n * sizeof(int));

Record which blocks are used.

Allocate memory according to
required size

Motivation: Challenges for DMM in HLS

(iint *) malloc (n * sizeof(int));

SysAlloc / DMM-HLS

Who will manage the dynamic
memory on FPGA?

Hardware Allocator

Hundreds of cycles?

1. Low Latency
Fixed-size Allocation? 2. High Utilization of BRAM

DOMMU 3. Large Management Capability AMMU
with Low Overhead of Area High overhead?

Motivation: Challenges for DMM in HLS

malloc

(int *)

Who will manage the dynamic
memory on FPGA?

Hardware Allocator

(n * sizeof(int));

Hi-DMM Allocators

(iint*) malloc

Previous Works

Automatic Transformation?)
Resource Mapping?3{
HLS Directive Compatibility?)

Motivation: Challenges for DMM in HLS

(n * sizeof(int));

How can it be synthesized
into a high-performance
design with HLS features?

Source Code Compiler

1. Source Code Transformation
2. Resource Mapping
3. Adaption to HLS Directives

10

Motivation: Challenges for DMM in HLS

malloc

(int *) (n * sizeof(int));

How can it be synthesized
into a high-performance
design with HLS features?

Source Code Compiler

Hi-DMM Compiler

!l

11

Motivation: Hi-DMM

(int*) malloc

: : How can it be synthesized
Who will manageFtS(e-;g\Xnamlc into a high-performance
memaory on ' design with HLS features?
Hardware Allocator

Hi-DMM AIIocators\A Hi-DMM Compiler\/

|\ J
Y

Hi-DMM

(n * sizeof(int));

12

 QOverview of HI-DMM

13

Overview: Workflow of Hi-DMM

Compilation-time

Source Code of Accelerator with DMM
int *a = (int *) malloc(n * sizeof(int));

H'ee(a);

Hi-DMM Compiler

Source Code Compatible with HLS

int offset_a =Hi_malloc(n, allocatorl);

i-'li_free(offset_a);

High-Level Synthesis

Run-time

()

Computation Static
Logic Memory
Accelerator IP Block
integrated with Heaps

~

14

Overview: Workflow of Hi-DMM

Compilation-time

Source Code of Accelerator with DMM
Un-synthesizable X

int *a = (int *) malloc(n * sizeof(int));

H'ee(a);

Hi-DMM Compiler

Source Code Compatible with HLS

int offset_a =Hi_malloc(n, allocatorl);

Based on Clang

Synthesizable \/
Accelerator IP Block
integrated with Heaps

i-'li_free(offset_a);

High-Level Synthesis

15

Overview: Workflow of Hi-DMM

Both of the accelerator and the allocators
are described in C and synthesized by
Vivado HLS.

Run-time

7

\.

Computation
Logic

\

Static
Memory

Accelerator IP Block
integrated with Heaps

~

16

Overview: Workflow of Hi-DMM

Run-time

Accelerator can send request to the
allocators and get an available address.

(N\

Computation Static
Logic Memory
Accelerator IP Block
integrated with Heaps

17

Overview: Workflow of Hi-DMM

Run-time

Then the accelerator can access the heaps
with the address directly.

\

Computation Static
Logic Memory
Accelerator IP Block
integrated with Heaps

~

18

* Implementation of Software

19

Software: HI-DMM Compiler

[Detection J

l

Analysis
&
Resource Mapping

l

Transformation
&
Adaption

20

Software: HI-DMM Compiler

Detection

l

Analysis
&
Resource Mapping

l

Transformation
&
Adaption

Definition of Pointers

int *a, *b, c; float *x, *y, z;
ap_unint<13> *e, f, *g; User_Struct *h, *k;

Allocation Function Call

a = (int*) malloc(n*sizeof(int));

e = (ap_unint<13> *) malloc(100*sizeof(ap_unint<13>));

h = (User_Struct *) malloc(sizeof(User_Struct));

Access to Pointers

afi] =b[j] +c; h->next = k;
e=g; h->val = 123;

HLS Directives

#pragma HLS array_partition variable=xxx factor=xxx
#pragma HLS unroll factor=xxx

1. Name
2. Type
3. Width

4. Allocation Requester
5. Granularity

6. Type of Access
7. Dependencies

8. Directive for Pointers
9. Directive involving Pointers

21

Software: HI-DMM Compiler

[Detection }

l

Analysis
&
Resource Mapping

l

Transformation
&
Adaption

Pointers Heaps Allocators

Heap 0 o

(3 Allocator ?

J

N
Y
(2) Depth of heap?

22

Software: HI-DMM Compiler

Pointers Heaps
[: } Heap 0
Detection
l ?
Analysis
< : 1. Map Pointers to heaps
Resource Mapping
Co-operations Fully-Connected Separated
between pointers: Graph Sub-graphs
Karger
Ali] = B[j] + CIil; 2 Algorithm
Transformation ... = - ,%
& DIk] = A[i] + B[m]; Max-Cuts *o
Adaption “
2 co-operations
between A and B -

Software: HI-DMM Compiler

==
l

Pointers Heaps

Heap 0

Analysis
& : 1. Map Pointers to heaps
Resource Mapping
Separated
Sub-graphs
Karger Pointer
Algorithm Mappmg
Transformation —_— ——
& Max-Cuts
Adaption
24

Software: HI-DMM Compiler

[Detection }
l U

Analysis @) Depth of heap.¢ ...

Py N 2ASS|gnBRAMresourcetoheaps
Resource Mapping

l Heap 0
Pointer Resource
. ' Mappin
Transformation Mapping | pping

: et

Adaption

Pointers Heaps

Heap 0

25

Software: HI-DMM Compiler

[Detection }
1)

Analysis @ Dept\fq of h e\ay (3 Allocator

g | e 3|\/|apheaps toal Iocato rs ..

Pointers Heaps Allocators

K-W§§ Tree

Resource Mapping

Depths of Heaps
Map Heaps to Allocators
—p| | Heap 0 =
| tepy | e e
Heap 0
Transformation mo
& T)_/pe
Adaption Width
Granularity |

26

Software: HI-DMM Compiler

1. Transformation

Definition of DMM Heaps

[Detection }

int Hi_DMM_Heap_0[8192];
l ap_uint<7> Hi_DMM_Heap_1[2048];

#pragma HLS array_partition variable=Hi_DMM_Heap 1 cyclic factor=4

DMM Interface

Analysis void TOP(hidmm_alloc_port *Hi_DMM _allocator_0) S.\(L‘a“\e
{ C
& ; #pragma HLS interface ap_hs port = Hi_DMM _allocator_0 $S“&\:/
Resource Mapping

}

Function Calls

offset_local_dis = HLS_malloc<8192>(n, Hi_DMM _allocator_1_Super_HTAS8K;

ansformation

/Ihead->VAL = data[0];
& head[OFFSET_LIST VAL] = data[0];

Adaption Assignment of Pointers (from one to another one)

/I now = tail;
offset_now = offset _tail;

27

Software: HI-DMM Compiler

2. Adaption to HLS Directives

[Detection } e.g. Loop Transformation for Loop Unrolling
Analysis Example without DMM: Operations mapped to corresponding partitions

&
Resource Mapping

l Iteration

_ Static
Transformation Array |
& BIk-0 Blk-1 Blk-2 : Blk-3

Op-0|Op-1 Op-2 :Op—3

Loop Unrollisg/

Adaption

28

Software: HI-DMM Compiler

2. Adaption to HLS Directives

[Detection } e.g. Loop Transformation for Loop Unrolling
Analysis Example with DMM : Operations mapped to all partitions
&

0{Op-1 Op-2 Op3

Resource Mapping lteration m ?
l Dynamic Loop Unrollin@(

I
Blk 0l BIk-1 BIK-2 : BIK-3

Array

Transformation
&

Adaption Heap [T [2]

Location of dynamic array is unknown.

29

Software: HI-DMM Compiler

2. Adaption to HLS Directives

[Detection } e.g. Loop Transformation for Loop Unrolling
Analysis Example with DMM : Operations mapped to all partitions
&

0{Op-1 Op-2 Op3

Resource Mapping lteration m ?
l Dynamic Loop Unrollin@(

I
BIk-O Blk-1 BIk-2 : BIK-3

Array

Transformation
&

Adaption Heap 1 2]

Location of dynamic array is unknown.

30

Software: HI-DMM Compiler

2. Adaption to HLS Directives

[Detection } e.g. Loop Transformation for Loop Unrolling
Analysis Example with DMM : Operations mapped to all partitions
&

0{Op-1 Op-2 Op3

Resource Mapping lteration m ?
l Dynamic Loop Unrollin@(

I
Blk 0l BIk-1 BIK-2 : BIK-3

Array

Transformation
&

Adaption Heap [LOMI 1 ['2]

Location of dynamic array is unknown.

31

Software: HI-DMM Compiler

2. Adaption to HLS Directives

[Detection } e.g. Loop Transformation for Loop Unrolling
l Solution: Loop Splitting
Analysis
& Op-0 |Op-1

Resource Mapping Iterations ?:)

l Dynamic || o | 1
array | g oPBik-

Transformation L
Heap | 0 2
& R

Adaption

Loop Unrolli\ng/

32

Software: HI-DMM Compiler

[Detection J

Analysis .
& _ Accelerator IP - = :}
Resource Mapping with DMM | Interconnect b |2 o |
l | - | Accelefator |5
Transformation

&
Adaption

33

* Implementation of Hardware

34

Hardware: HI-DMM Allocators

What do allocators do?

1. Record which blocks in the heap are used

INnt *a{

2. Allocate memory according to the size

Accelerator Request: 2 blocks

Available blocks

Memory block 0 M

. > A Heap

Memory block N-2
Memory block N-1]

Allocator Response: Address of available blocks

35

Hardware: HI-DMM Allocators

Compare with Previous Works

Previous Mechanism | Allocation Latency | Resource Cost | Memory Efficiency
Buddy Tree medium
Fixed-Size Blocks
Free List medium

Hi-DMM allocators are based on buddy tree.

Proposed Mechanism | Allocation Latency | Resource Cost | Memory Efficiency
Hi-DMM Allocators

36

Hardware: HI-DMM Allocators

Compare among Hi-DMM Allocators

Hi-DMM Mechanism Allocation Latency Resource Cost Highlights
Very low Fast allocator
SR OMAES (~10 cycles) Low for small heap
Pre-Allocation Tree Very low Low Pre-allocate a block
(~5 cycles) for next request
: Low Very large
Aol Ve (~20 cycles) very low management capability
Extremely low Fixed-size allocator for
K-Way Tree (~1 cycles) Extremely Low user-defined struct

— =

Meet the requirements of various applications

37

Hardware: Buddy Tree

 Conventional Buddy Tree Allocation:

— Splits the entire space of heap repetitively in half to find an
available memory block best fitting the size of request.

16KB

38

Hardware: Buddy Tree

 Conventional Buddy Tree Allocation:

Allocation Example

2KB | 2KB Jil 2KB] 2KB

39

Hardware: Buddy Tree

 Conventional Buddy Tree Allocation:

Maintenance Example

Mark Upwards

8KB

4KB

Mark Downwards 20

Hardware: HI-DMM Allocators

Fast Buddy Tree Allocator (FBTA):

1. Allocation without searching layer by layer, based on bit operation

Bit-Vector (BV)

11110010

41

Hardware: HI-DMM Allocators

Fast Buddy Tree Allocator (FBTA):

1. Allocation without searching layer by layer, based on bit operation

BV= (111 10010
\

How to find the lowest set (i.e. 1) bit in BV?

-BV= |00001110{ (two'scomplement)

(-BV)&BV= 00000 0[10——> Index
Log2
MUX

42

Hardware: HI-DMM Allocators

 Fast Buddy Tree Allocator (FBTA):

2. Maintenance parallelized

Mark Upwards

8KB

2KB

Mark Downwards

43

Hardware: HI-DMM Allocators

 Fast Buddy Tree Allocator (FBTA):

2. Maintenance parallelized

Pipeline

44

Hardware: HI-DMM Allocators

Pre-Allocation Tree Allocator (PATA):

Based on FBTA but can pre-allocate before the request

Locality of Allocation

Temporal: An allocation request is usually followed closely by another one.

Spatial: Those allocation requests close to each other usually ask for similar size.

~- - - [R0 Rt - - = e o oo =

Similar Size

Close

45

Hardware: HI-DMM Allocators

 Hybrid Tree Allocator (HTA):

Based on FBTA but can manage those wide bit-vectors with thousands of bits.

Resource / Latency

T T

Wide BV: 0 | 0 ol o [Ranihalia) N R REREET 0]0]0]0/

46

Hardware: HI-DMM Allocators

Hybrid Tree Allocator (HTA):

Based on FBTA but can manage those wide bit-vectors with thousands of bits.
Solution: use BV to mange a wide BV

Group BV

/\.

wide BV: Ol IO IOH memiy - = = — = D

47

Hardware: HI-DMM Allocators

 K-Way Tree Allocator (KWTA):

Manage fine-grained fixed-size user-defined struct variables

Scenario: Dynamic Data Structure

Characteristics:

Waste of Resource 1. Fixed-size:

tree_node
Buddy Tree? queue_element

Further Lower Latency Required 2. Frequent (De-)Allocation Operations

Insert_tree_node()

queue_pop()

48

Hardware: HI-DMM Allocators

 K-Way Tree Allocator (KWTA):

Manage user-defined struct variables with extremely low latency

Following requests will
be handled by the cache.

\An block will be
allocated from the cache.
Summary BV \

Mini-Heap:
a cache of
fixed-size blocks

49

 Evaluation of HI-DMM

50

Evaluation: Allocator Performance

@ 100MHz with Zyng-7020

100 | | p—— I I I I I | —— Request handled by SysAlloc
3 e (Hundreds of cycles)
&) i
> | 1 1 1 | | | | | | | |
2 I I I I I I I I I I I
i | | | | | | | | | |
S T el e e iy e i S S Tl
R e e e T A N
i | | | T T | | | | N
llocation S ' I I I I I I I I I I I
A = I E B IR B I I I I | | Request handled by Hi-DMM
Latency 8 T T T T T T (Tens of cycles)
=S L R N N N N SR N N RO S N
tS) 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
é‘ Management Capability / MAUs
(¢<b]
E —t=FBTA —@=PATA(MIN) ==te=PATA(max) KWTA(min)
KWTA(max) ==o=HTA(min) == HTA(max) —&— SysAlloc

51

)
&)
 _—
-
@)
7p
)]
ad
@)
s
©
&)
@)
<
C
@)
pra
qy)
")
M
>
LLI

@ 100MHz with Zyng-7020

LUT Usage

o L0 o Lo o

4K 8K 16K 32K 64K

Management Cgpability / MAUs

32 64 128 256 512 1K

KWTA == SysAlloc

—4—FBTA= =PATA —#—HITA

I
—d=-=F=-d4-=-F=-4--
I

| | |
(S RIS [| N —— -

30

25 F=-d--F—-4d--Fmg4--F

I
0 F-de-bod--

% /LN7130 uonezinn

2K 64K

32 64 128 256 512 1K 2K 4K 8K 16

Management Capability / MAUs

KWTA —%SysAjloc

—+=FBTA =E=PATA —+=HTA

Resource cost by HTA is much lower than FBTA.

52

Evaluation: Memory Efficiency of KWTA

@ 100MHz with Zyng-7020

Utilization

> 1500 >
2 1300 S
S 1100 5
= 900 S 1
% 700 w— 09
o
@ 500 2 08
S 300 2 07 1 &
¥ 100 © 82 $ 0@0

-100 = 0. S

5 04 0&0@@}
Size op. 4 61 & &
m"’i“hea 16 64 256 4@,‘ (,\Qo
= -100-100 = 100-300 = 300-500 500-700 P/ May, 256 ¢S
= 700-900 = 900-1100 m 1100-1300 = 1300-1500 ®0.4-0.5 m05-0.6 #0.6-0.7 ©0.7-0.8 =0.8-0.9 m0.9-1

53

Evaluation: Source Code Optimization

Pointer Mapping

Calculation with Multiple Matrices: ABCD + EF

Automatically distributes pointers

to 2 heaps with Hi-DMM 125033 cycles

6.0%

Assign all pointers to 1 heap: 133033 cycles

54

Evaluation: Source Code Optimization

Loop Transformation

Reduction Operation based on Dynamic Arrays
(unroll_factor = 4)

412~812 cycles

With loop transformation:

Without loop transformation: 842 cycles

95

Evaluation: Source Code Optimization

Allocation Selection

0.84%
Shortest Path Faster Algorithm (SPFA) with a queue

KWTA: 15890 cycles

4.72%

HTA with pre-allocation: 16563 cycles

6.34%

HTA: 16840 cycles

56

* Open-Source HI-DMM Platform

57

HI-DMM Is open to the community

https://github.com/zslwyuan/Hi-DMM

<» Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Home Edit
Tingyuan LIANG edited this page 14 days ago - 28 revisions

Hi-DMM: High-Perfarmance Dynamic Memory Management in High-Level Synthesis

) Authors: Tingyuan Liang, Jieru Zhao, Liang Feng, Sharad Sinha,and Wei Zhang ~ Pages €5
Manage topics

Welcome to the Hi-DMM wiki!

{D 88 commits P 1branch © 0 releases Hi-DMM is a comprehensive project developed in an academic work, with its implementation Home
covering both hardware and software. We do hope this preject can make contribution to the
community and we will be happy to get feedback or suggestion from designers. Therefore, to help 1. Introduction to Hi DMM
Branch: master ~ New pull request Creat ser to understand Hi-DMM and use it easier, the Wiki of Hi-DMM is organized as below: 2. Implementation of Hi DMM
. . . . 2...a)Hardware
I zshwyuan relcad the target in example 1. What is Hi-DMM? Introduction to Hi-DMM
2...a)Hardware:(DBasic
Il AllocationCheck debug_kwta_miniheap16_validation_prj 2....a)Hardware:(FBTA
1a) Citation
B Allocator P include KWTA_mini1 Allocator 2...a)Hardware:3)PATA
1b) Characteristics of Hi-DMM
. . : 2...a)Hardware:@HTA
B Application_Examples update_example_applications 1€) Overvlen of Hi-DMA Horkflow
2...a)Hardware:3KWTA
Images upload image for Wiki
- g P g 2...a)Hardware:@Heaps
B Validation_Projects lowta_miniheap2_validation_prj 2. How does Hi-DMM work? Implementation of Hi-DMM 2. Fardware@interconnect
on and Interaction
Bl Validation_Simulation_Scripts update_example_applications
2a) Hardware: DMM Componets 2...b)Software
0 B ; -> Allocators
I Validation_TestIPs kwta_miniheap2_validation_prj 5 ot QR TR 2...b)Software:®DMM
Behavior Analysis
hon_hidmm reload the target in example = (Bt UL W A
i pyt - 9 P -» Pre-Allocation Tree Allocator 2...b)Software:@DMM
. . . -> Hybrid Allecater Resource Mapping
El .gitignore Initial commit -» K-Way Tree Allocator
-> Other components 2...b)Software:@Code
[E] LICENSE Initial commit -> DMM Heaps Insertion and Replacement
-> Interconnections and Interactions Show 7
ow 7 more pages...
E] README.md update README e

2b) Software: Source-Code-Level Transformation and Component Generation
-» Analyzer - Compiler

58

 Conclusion

959

Conclusion

— Software: HI-DMM Compiler
« Automatic Transformation
* HLS-Friendly
e Couple with commercial tools (Vivado / Vivado HLS)

— Hardware: Hi-DMM Allocator

« High Performance
* HLS-Friendly
« Adaptive to various applications

— Future Works
 Consider more DMM characteristics
« Further improve the performance of allocators

60

