
Machine Learning Based Routing Congestion

Prediction in FPGA High-Level Synthesis

Jieru Zhao1, Tingyuan Liang1, Sharad Sinha2, Wei Zhang1

1Hong Kong University of Science and Technology (HKUST)

2Indian Institute of Technology Goa (IIT Goa)

IIT GOA
INDIAN INSTITUTE OF TECHNOLOGY GOA

• Background

• Machine-Learning Based Methodology

• Experimental Results

• Conclusion

Outline

1

• Background

• Machine-Learning Based Methodology

• Experimental Results

• Conclusion

Outline

2

Background: FPGA

Basic FPGA Architecture:
• LUT
• Flip-flop
• DSP Block
• Storage elements: BRAM

As an accelerator, FPGA has:
• High performance
• Low power
• Programmability & Flexibility
• Short time-to-market

A wide range of applications:
• Data center
• Image processing
• Communications
• … 3

FPGA CAD design flow

BitStream

HDL

Frontend Compilation

IR

Scheduling

C/C++

Hardware Binding

Code Generation

Logic Synthesis

Technology Mapping

Place and Route (PAR)

Netlist

[Source from Xilinx]

RTL Implementation Flow

Error-prone and time-
consuming.

High performance.

Hard to debug.

High development cost.

4

FPGA CAD design flow

Frontend Compilation

IR

Scheduling

C/C++

Hardware Binding

Code Generation

High-Level Synthesis Flow

Easier to implement.

Hard to grasp hardware
implementation details.

Fast design space exploration.

BitStream

HDL

Logic Synthesis

Technology Mapping

Place and Route (PAR)

Netlist

[Source from Xilinx]

RTL Implementation Flow

Error-prone and time-
consuming.

High performance.

Hard to debug.

High development cost.

5

In FPGA design, routing contributes a lot to delay and resource utilization.

Issue: Routing Congestion

Netlist Placement RoutingBitStream

HDL

Logic Synthesis

Technology Mapping

Place and Route (PAR)

Netlist

Congested region
Wires are detoured

Longer delays

More routing resources

Degrade performance

Implementation failures

6

• Physical design: Routability driven placement.

• Time-consuming: invoke the router repeatedly.

• Congestion prediction model guides the placement.

• Machine learning techniques.

Features: #bounding boxes, half-perimeter wirelength (HPWL), #pins …

• When the abstraction level increases…

• Beneficial: easier to resolve congestion at C source-code level.

• Time-consuming: run the C-to-bitstream flow.

• Congestion prediction is required.

How to solve this issue?

Question: How to predict routing congestion in HLS?
7

• Lack of physical metrics or features at a higher level of abstraction.
• Physical features obtained during placement: #bounding boxes, HPWL, #pins …

Challenges

Extract new informative features in HLS.

• GUI-based “back to verilog” for each CLB after PAR.
• Not applicable to build a dataset containing a large number of samples.

• We need “back to C”.

• Choice of machine learning models.
• Linear, ANN, Decision tree…

Automate the process: congestion metrics per CLB -> operations in C code.

Explore different kinds of machine learning models.

8

Motivational Example

• Synthesis directives are applied to configure
the design.
• Loop unrolling
• Loop pipelining
• Array partitioning
• Function inlining
• …

Hardware-friendly C code.

Careful selection of directives.

For HLS-based designs,

• Applications are implemented with C/C++.

9

Motivational Example

Implementation WNS
(ns)

Max Freq.
(MHz)

Latency
(cycles)

Max Congestion
(%)

With directives -13.643 42.3 1.08 × 106 178.96

Without directives -0.066 99.3 1.73 × 107 58.51

Application: Face Detection.

Note: WNS denotes the worst negative slack.

By applying several directives as shown in
the application code:
• Latency (cycles)
• Congestion
• Max frequency

Routing Congestion Maps.

By early detection, we can avoid non-friendly
coding style and improper directives!

Time cost:
• Logic synthesis and PAR: nearly 7 hours.
• HLS: several minutes.

10

• To the best of our knowledge, we are the first to build a routing congestion
prediction model in FPGA HLS.

• We develop an automatic tool to back trace the congestion metrics of CLBs
and link with the HLS IR.

• We propose seven informative categories of features and compare three
machine learning models.

• We propose effective solutions to resolve routing congestion.

Our Contributions

11

• Background

• Machine-Learning Based Methodology

• Experimental Results

• Conclusion

Outline

12

Overview of our approach

High Level Synthesis Flow

Congestion
metrics

IR

HDL

C/C++

RTL Implementation Flow

Model
Training

Information
Collection

Back
Tracing

Feature
Extraction

Dataset

Models

Congested
Region

High Level Synthesis Flow

Modified
Design

Features

Congestion
Resolving

Design

Model
Training

Congestion
Prediction

Training Phase

• Construct the dataset for training.

• Back tracing

• Information collection

• Feature extraction

• Model training

Prediction Phase

• Congestion prediction

• Congestion resolvingOptimized
Design

13

1. Automatic Back Tracing

Congestion
metrics

HDL

Frontend Compilation

IR

Scheduling

C/C++

Hardware Binding

Code Generation

Logic Synthesis

Technology Mapping

Place and Route (PAR)

Netlist

Intermediate Representation (IR)
id=“1858”:

%II_V_5_10_1 = phi i18 [0, %...], [%p_II_135_V, %...]

……

id=“3373”:

%tmp_35_5_s = sext i14 %r_V_4_5_s to i18

id=“3374”:

%p_II_135_V = add i18 %tmp_35_5_s, %II_V_5_1

CLB, Row, Column, Vertical Cong(%), Horizontal Cong(%)
CLBLM_R_X71Y149, 7, 129, 36.02, 48.33
CLBLM_R_X69Y52, 101, 172, 87.05, 39.04
…….

CLB, Net of the output Pin
CLBLM_R_X69Y98, p_II_112_V_reg_58246[7]_i_7_n_4
CLBLM_R_X69Y52, SI_V_24_35_1_reg_30030_reg_r_
…….

HDL Description
assign p_II_135_V_fu =

($signed(tmp_35_5_s_fu) + $signed(II_V_5_10_1_reg));

……

assign p_II_112_V_fu =

($signed(tmp_35_4_11_fu) + $signed(II_V_4_12_1_reg));

Source Code
for (u = 0; u < window_size; u++)

#pragma HLS unroll

for (v = 0; v < window_size; v++)

#pragma HLS unroll

II[u][v] = II[u][v] + (I[u][v+1] - I[u][0]);

High-Level Synthesis Flow

RTL Implementation Flow
RTL operations in HDL description.

Net of the output pin for each CLB.

Congestion metrics and
corresponding CLB coordinates.

IR operations in LLVM IR.

C statements in the source code.

14

2. Information Collection

Each sample in the dataset contains:
• Features of each operation.
• Labels: corresponding congestion metrics.

To extract features, a graph is constructed to store the HLS-based information.
• Node: HLS IR operations.
• Node attributes: resource usage, bitwidth, delay…
• Edge: dependency among operations.
• Edge weight: the number of wires for the corresponding connection.

Resource sharing: merge the nodes that share the
RTL module.

Function Interface: add I/O port in the graph.

When constructing the graph, we also consider…

1

3

2

b

d

1

3

2

c

a

15

3. Features

Category Feature Descriptions

Bitwidth Bitwidth of each operation.

Inter-connection

Fan-in and fan-out of each operator and their summation;
#predecessors, #successors and the summation;
The max. number of wires among all the connections to one-hop neighbors and its percentage of the total fan-
in and fan-out.
Corresponding features after including two-hop neighbors.

Resource
(for each type)

Resource usage and utilization ratios of each operation;
The total resource usage and utilization ratios of all the predecessors, successors and their summation;
The max. resource usage and corresponding percentage among all the one-hop neighbors;
Corresponding features after include two-hop neighbors.

Timing Delay(ns) and latency(clock cycles) of each operation.

#𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠

Resource usage and utilization ratios of predecessors/successors, divided by the subtraction of control states
∆𝑇𝑐𝑠; Corresponding features for two-hop neighbors.

Operator Type The operation type of each operator; The number of each kind of operations among one-hop neighbors.

Global
Information

Resource usage of the top-level function (𝐹𝑡𝑜𝑝), the function in which the operation is located (𝐹𝑜𝑝) and the
corresponding percentage of the resources of 𝐹𝑡𝑜𝑝;
Target/estimated clock period and clock uncertainty of 𝐹𝑡𝑜𝑝 and 𝐹𝑜𝑝;
Memories: #words, #banks, #bits and #primitives(words*bits*banks);
Multiplexers: number, resource usage, input size and bitwidth.

16

3. Features

In summary, for each operator, we consider:

• Features of the operator itself.

• Bitwidth, fan-in, fan-out, timing-related features, resource usage…

• Features that reflect the global information.

• Total resource usage of the functions, target/estimated clock period, #mux…

• Features that reflect the impact of neighboring operators.

• One-hop neighbors.

• Two-hop neighbors.

17

3. Features

Neighboring operators:

1

1

2

0

1

2

1

2

2 2

3

4

1

1

2

0

1

2

1

2

2 2

3

4

One-hop neighbors Two-hop neighbors

 Inter-connections

 Resource usage

 Spatial distance
#𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠

Features that reflect the impact of neighbors:

a

𝑆1

𝑆3

C=1

C=2

C=3

C=4 𝑆2

𝑆1 and 𝑆2 are two successors of

operator a.

• 𝑆1: execute immediately after a;

• 𝑆2: execute several cycles later.

The distance constraints between

a and 𝑆1, 𝑆2 are different.

For 𝑆1, ∆𝑇𝑐𝑠 = 1.
For 𝑆2, ∆𝑇𝑐𝑠 = 3.

18

4. Model Training

Sample filtering: filter outliers and improve the quality of the dataset.

Distribution of the vertical routing congestion
metrics for Face Detection on FPGA.

Unroll a loop with a large unrolling factor.

Multiple copies of the same operation.

These copies can be placed to distant locations.

Some are placed around the margin of FPGA.

Their congestion metrics deviate from most of
the replicas (~3% outliers).

19

4. Model Training

Machine learning models: compare and select the best model for our problem.

• Lasso linear model.

• Linear relationships.

• Tuning parameter: the constant α that multiplies the L1-norm.

• Artificial neural network (ANN).

• Several hidden layers between the input and output layers.

• Tuning parameter: a number of hyperparameters.

• Gradient boosted regression trees (GBRT)

• Multiple weak prediction models are combined to form a powerful regression ensemble.

• Tuning parameter: the number of estimators, the learning rate…

20

5. Congestion Prediction

Models

Congested
Region

High Level Synthesis Flow

Modified
Design

Features

Congestion
Resolving

Design

Congestion
Prediction

Model training

Optimized
Design

• Based on the trained model, the congested regions can be detected in the C/C++ source code.

• Analyze the reasons of the routing congestion and find solutions.

• Modify source code.

• Change synthesis directives.

• Recursively mitigate congestion and optimize the target application.

Case Study

21

• Background

• Machine-Learning Based Methodology

• Experimental Results

• Conclusion

Outline

22

Benchmark suite: Rosetta.

Device: Xilinx FPGA xc7z020clg484.

Our dataset contains 8111 samples.

• 302 features in seven categories.

• 3 labels: vertical congestion metric, horizontal congestion metric and their average.

Tools: Vivado design suite 2018.1, Scikit-learn machine learning library.

The property of the benchmarks are shown in:

Experiments

Congestion
Metrics

WNS
(ns)

Frequency
(MHz)

Vertical
Congestion (%)

Horizontal
Congestion (%)

Avg. (V, H)
Congestion (%)

Max -3.253 75.5 133.33 178.96 144.87

Min -13.643 42.3 5.06 8.90 6.73

Avg. -8.386 54.4 60.58 72.47 64.89

23

Estimation Accuracy

Regression
Models

Vertical
Congestion (%)

Horizontal
Congestion (%)

Avg. (V, H)
Congestion (%)

MAE MedAE MAE MedAE MAE MedAE

Not
Filtering

Linear 13.90 10.88 18.02 12.62 13.73 9.94

ANN 12.19 7.91 17.68 12.62 12.27 8.17

GBRT 10.55 7.37 15.71 10.89 10.57 6.78

Filtering

Linear 12.41 9.20 17.48 12.16 12.76 9.50

ANN 10.23 7.43 16.61 11.78 11.67 7.83

GBRT 9.59 6.71 14.54 10.05 9.70 6.81

• 10-fold cross validation and grid search.

• Mean absolute error (MAE) measures the average value of the absolute relative errors.

• Median absolute error (MedAE) reflects the distribution of the absolute relative errors.

• Best performance: the GBRT model.

24

Congestion
Metrics

Vertical
Congestion

Horizontal
Congestion

Avg. (V, H)
Congestion

Important
Feature

Categories

#𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠

#𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠
Resource

Resource Resource #𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠

Interconnection Interconnection Interconnection

Global (Mux) Global (Memory) Global (Mux)

Important Features

• Importance of different categories of features is assessed through the GBRT model.

•
#𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒

∆𝑇𝑐𝑠
has the greatest impact on both vertical and horizontal congestion metrics.

• The related information of multiplexers and memories has a greater effect than other
global features.

Importance rank

25

Case Study

Implementation
WNS
(ns)

Max Freq.
(MHz)

∆Latency
(cycles)

Max Congestion
Vert, Hori (%)

#Congested
CLBs (>= 100%)

Baseline -13.643 42.3 1.08 × 106 133.33, 178.96 1272
Application: Face Detection

Baseline: Original design.

• Severe routing congestion
degrades the maximum
frequency significantly.

• Performance trade-off

Baseline(H)

Baseline(V)

26

Case Study

Implementation
WNS
(ns)

Max Freq.
(MHz)

∆Latency
(cycles)

Max Congestion
Vert, Hori (%)

#Congested
CLBs (>= 100%)

Baseline -13.643 42.3 1.08 × 106 133.33, 178.96 1272

Not Inline -3.504 74.1 +23 129.85, 97.60 193

Step 1

Not Inline(V)

Step 1

Not Inline(H)Baseline(H)

Baseline(V)

Step 1: Not Inline

• The classification function
contains 52 classifiers.

• Function inlining increases
the complexity in C synthesis
and generates a larger
design.

• Not inline the classifiers.

27

Case Study

Implementation
WNS
(ns)

Max Freq.
(MHz)

∆Latency
(cycles)

Max Congestion
Vert, Hori (%)

#Congested
CLBs (>= 100%)

Baseline -13.643 42.3 1.08 × 106 133.33, 178.96 1272

Not Inline -3.504 74.1 +23 129.85, 97.60 193

Replication -0.767 92.9 +0 106.15, 104.73 17

Step 1

Not Inline(V)

Step 1

Not Inline(H)

Step 2

Replication(H)

Step 2

Replication(V)

Baseline(H)

Baseline(V)

Step 2: Replication

• All the classifiers access the
same completely partitioned
array and multiple classifiers
share the same inputs.

• A large number of
interconnections.

• Modify the source code by
replicating the values of the
input data and sending
copies to different classifiers.

28

• Background

• Machine-Learning Based Methodology

• Experimental Results

• Conclusion

Outline

29

• We propose a novel machine-learning based methodology to predict routing
congestion in FPGA HLS.

• Experiments show that the GBRT model achieves the highest prediction
accuracy.

• Based on our model, routing congestion can be mitigated step by step and the
performance of Face Detection can be improved significantly.

Conclusion

30

Thank you for listening!

Q & A

